• Title/Summary/Keyword: Guidance control

Search Result 902, Processing Time 0.023 seconds

LINEAR QUADRATIC OPTIMAL GUIDANCE WITH ARBITRARY WEIGHTING FUNCTIONS

  • LEE, CHANG-HUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.365-386
    • /
    • 2015
  • In this article, the linear quadratic (LQ) optimal guidance laws with arbitrary weighting functions are introduced. The optimal guidance problems in conjunction with the control effort weighed by arbitrary functions are formulated, and then the general solutions of these problems are determined. Based on these investigations, we can know a lot of previous optimal guidance laws belong to the proposed results. Additionally, the proposed results are compared with other results from the generalization standpoint. The potential importance on the proposed results is that a lot of useful new guidance laws providing their outstanding performance compared with existing works can be designed by choosing weighting functions properly. Accordingly, a new optimal guidance law is derived based on the proposed results as an illustrative example.

Implicit guidance using linear tangent pitch program (선형 탄젠트 피치 프로그램을 이용하는 Implicit 유도)

  • 진재현;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.686-691
    • /
    • 1992
  • Implicit guidance algorithm can deal with the trajectory error rapidly, but it has to save much data. If, however, the control variable is represented by a specific function form, a few parameters will suffice to define the control variable. In this paper, we study the method of updating the parameters of the control function for the reduction of trajectory errors. The method proposed here does not require much memory for guidance.

  • PDF

A Comparative Study on Guidance Systems for Ship's Track-Keeping (선박의 항로추종 유도기법에 관한 비교 연구)

  • Xu, Zhizun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.308-309
    • /
    • 2016
  • This paper deals with ship's track keeping methods which is crucial part of automatic navigation control systems. In this paper, we mainly discuss the performance of different guidance methods including way point guidance, enclosure-based steering guidance and lookahead-based steering guidance system. As a controller, a PID control system is employed to control ship's rudder angle during track-keeping. Finally, the performance of three methods are discussed through some simulation results.

  • PDF

Guidance Law for Near Space Interceptor based on Block Backstepping Sliding Mode and Extended State Observer

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer (ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact angle constraint of attacking the maneuvering target. Based on the backstepping control approach, the target maneuvers and the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the "explosion of complexity" problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target maneuvers, but also obtain a small miss distance.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.

Design of Autolanding Guidance and Control Algorithm Using Singular Perturbation (특이섭동법을 이용한 비행체 자동착륙 유도제어 알고리즘 설계)

  • Ha, Cheol-Keun;Choi, Hyoung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.726-732
    • /
    • 2005
  • This paper proposes an autolanding guidance and control algorithm with the lateral guidance law. This algorithm is basically formulated and designed in feedback linearization based on singular perturbation. Main features of this algorithm are two facts. One of those is that when a certain situation happens that airplane must realign to the runway suddenly assigned due to unexpected environment change around the landing site, the heading guidance in this algorithm is very valuable, and the other is the fact that the inner loop control of this algorithm is able to be designed directly based on the Handling Quality Requirements that most flight control systems must be satisfied with. To illustrate the potential of this algorithm, 6-DOF nonlinear simulation based on the nonlinear airplane model shown in Ref.[11] is carried out. The simulation results showed that the altitude response to the given landing trajectory is accurate, and the airplane heading alignment to the assigned runway from the lateral deviation is successful. It is noted that this algorithm is also applicable to unmanned aerial vehicle, which can be retrieved in autolanding technique, where the runway far retrieving the vehicle is in any direction for example at war field.

Generalized Guidance Law with Control Time Constraint for Exoatmospheric Target Interception (외기권 표적 요격을 위한 제어시간 구속조건을 가지는 일반화된 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.814-822
    • /
    • 2018
  • This paper proposes a guidance law for missiles with control time constraint. Because the proposed guidance law is based on a time-to-go polynomial, it has a generalized form. Also, acceleration of the proposed law converges to zero at the end of the control time, which reduces the sensitivity to the time-to-go estimation error and can increase the flight stability when the separation of the missile appears. A prediction method of the time-to-go is proposed for implementing the proposed law, and the possibility of application to the midcourse and terminal guidance phases is dealt with for exoatmospheric interception. The characteristics and performance of the proposed law are analyzed throughout various simulations.

Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle (시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션)

  • Cho, Woosung;Lee, HyeongJin;Lee, Yeol;Ko, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.627-636
    • /
    • 2021
  • This paper deals with a study for the guidance control of reusable launch vehicle. For this purpose, modeling of the equation of motion of a reusable launch vehicle with 6 degrees of freedom was performed. With this model, an optimal re-entry path was created and a path-following guidance control simulation was performed to follow the optimal re-entry path. For the design of the path-following guidance controller, the attitude controller applying a time-delay technique that is resistant to modeling uncertainty, disturbance and failure. And the nonlinear path-following guidance law were used. Guidance control simulation using a classical PD controller was performed and compared with the guidance control simulation of a reusable launch vehicle applying a time delay technique.

A Modified Weighted Least Squares Range Estimator for ASM (Anti-Ship Missile) Application

  • Whang Ick-Ho;Ra Won-Sang;Ahn Jo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.486-492
    • /
    • 2005
  • A practical recursive WLS (weighted least squares) algorithm is proposed to estimate relative range using LOS (line-of-sight) information for ASM (anti-ship missile) application. Apart from the previous approaches based on the EKF (extended Kalman filter), to ensure good convergence properties in long range engagement situations, the proposed scheme utilizes LOS rate measurements instead of conventionally used LOS angle measurements. The estimation error property for the proposed filter is investigated and a simple error compensator is devised to enhance its estimation error performances. Simulation results indicate that the proposed filter produces very accurate range estimates with extremely small computations.