DOI QR코드

DOI QR Code

Generalized Guidance Law with Control Time Constraint for Exoatmospheric Target Interception

외기권 표적 요격을 위한 제어시간 구속조건을 가지는 일반화된 유도법칙

  • Received : 2018.07.03
  • Accepted : 2018.09.27
  • Published : 2018.10.01

Abstract

This paper proposes a guidance law for missiles with control time constraint. Because the proposed guidance law is based on a time-to-go polynomial, it has a generalized form. Also, acceleration of the proposed law converges to zero at the end of the control time, which reduces the sensitivity to the time-to-go estimation error and can increase the flight stability when the separation of the missile appears. A prediction method of the time-to-go is proposed for implementing the proposed law, and the possibility of application to the midcourse and terminal guidance phases is dealt with for exoatmospheric interception. The characteristics and performance of the proposed law are analyzed throughout various simulations.

본 논문은 제어시간이 제한된 유도탄에 적용하기 위한 유도법칙을 제안한다. 제안된 유도법칙은 잔여비행시간에 대한 다항식을 기반으로 설계되어 일반화된 형태를 가지게 된다. 또한 제어 종료시점에서 가속도 명령을 0으로 만들어 잔여비행시간(time-to-go) 추정 오차에 대한 민감도를 줄여주고, 단 분리 등의 이벤트 발생 시 비행 안정성을 증가 시켜줄 수 있다. 제안된 유도법칙을 적용하기 위한 잔여비행시간 추정방법을 제안하고, 고고도 방어요격탄의 중기 유도 및 종말 유도에 대한 적용 가능성을 제시한다. 다양한 시뮬레이션 수행을 통하여 제안된 유도법칙의 특성 및 성능을 분석한다.

Keywords

References

  1. Ryoo, C. K., and Cho, H., and Tahk, M. J., "Optimal Guidance Laws with Terminal Impact Angle Constraint," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 724-732. https://doi.org/10.2514/1.8392
  2. Tahk, M. J., Min, B. M., and Shim, D. H., "Study on the tgo-Polynomial Guidance Law," KSAS 07-1405, 2007, pp. 459-462.
  3. Jeon, I. S., Lee. J. I., and Tahk, M. J., "Impact-Time-Control Guidance Law for Anti-Ship Missiles," IEEE Transactions on Control Systems Technology, Vol. 14, No. 12, "2006", pp. 260-266. https://doi.org/10.1109/TCST.2005.863655
  4. Lee, J. I., Jeon, I. S., and Tahk, M. J., "Guidance Law to Control Impact Time and Angle," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, 2007, pp. 301-310. https://doi.org/10.1109/TAES.2007.357135
  5. Massoumnia, M., "Optimal Midcourse Guidance Law for Fixed-Interval Propulsive Maneuvers, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 465-470. https://doi.org/10.2514/3.21410
  6. Bahrami, M., and Ebrahimi, B., "Optimal Sliding-Mode Guidance Law for Fixed-Interval Propulsive Maneuvers," IJE Transactions A: Basics, Vol. 21, No. 2, 2008, pp. 105-112.
  7. Jalai-Naini, S. H., and Ebrahimi, B., "Modified Guidance with N-Fixed-Interval Propulsive Maneuvers," AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2002-4951, 2002.
  8. Ebrahimi, B., Bahrami, M., and Roshanian, "Optimal Sliding-Mode Guidance with Terminal Velocity Constraint for Fixed-Interval Propulsive Maneuvers," Acta Astronautica, Vol. 62, No. 10-11, 2008, pp. 556-562. https://doi.org/10.1016/j.actaastro.2008.02.002
  9. Morgan, R. W, "Midcourse Guidance with Terminal Handover Constraint," American Control Conference, July 2016, pp. 6006-6011.
  10. Guo, Ya., Hawkins, M., and Wie, B., "Application of Generalized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 3, 2013, pp. 810-820. https://doi.org/10.2514/1.58099
  11. Lee, C. H., Kim, T. H., Tahk, M. J., and Whang, I. H., "Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 2013, pp. 74-92. https://doi.org/10.1109/TAES.2013.6404092
  12. Zarchan, P., Tactical and Strategic Missile Guidance, 5th Edition, Vol. 219, AIAA, Reston, VA, 1997.