• Title/Summary/Keyword: Guidance Missile

Search Result 156, Processing Time 0.022 seconds

A linearized curvature guidance algorithm for a passive homing missile (수동 유도 미사일 제어를 위한 선형화된 곡률 유도 알고리즘)

  • 신용준;김경근;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.245-248
    • /
    • 1996
  • This paper suggests a new concept for missile guidance control, called linearized common curvature guidance law that enhances the probability to kill a target. The proposed guidance system is composed of two switching modes; one for the midcourse guidance and the other for the terminal guidance, which is switched by a specified critical value (.epsilon.). And the system and the commands are formulated and its simulations are provided in comparison with the conventional commanded line of sight guidance algorithm. Miss distance and angle of attack are denoted as performance of parameters. This new concept, common curvature guidance algorithm, revises the navigation guidance and accompanies, various considerations.

  • PDF

Absolutely Stable Region for Missile Guidance Loop (유도탄 유도루프의 절대안정한 시간영역)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, the stable region for missile guidance loop employing an integrated proportional navigation guidance law is derived. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. By applying the circle criterion to the system, a bound for the time of flight up to which stability can be assured is established as functions of flight time. Less conservative results, as compared to the result by Popov criterion, are obtained.

Effects of time-to-go freezing on PN guidance loop stability

  • Rew, Dong-Young;Tahk, Min-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.283-286
    • /
    • 1995
  • Due to finite bandwidth of missile dynamics, guidance commands in PN guidance tend to diverage as the missile approaches to the target. In this paper, a new method based on the short-time stability theorem is introduced to extend the stability region.

  • PDF

Performance Comparison between True Proportional Navigation Guidance Law and Pure Proportional Navigation Guidance Law (단거리 지대공 유도무기에서의 순비례항법 유도법칙과 진비례항법 유도법칙의 성능비교)

  • Liu, Yue-Huan;Jeon, Chil-Hwan;Lee, Yeon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.525-530
    • /
    • 2007
  • In this paper, a performance comparison between traditional TPN (true proportional navigation) guidance law and PPN(pure proportional navigation) guidance law is made, based on a short range surface-to-air missile simulation program. This simulation program has a nonlinear aerodynamic missile model, a roll stabilized autopilot, a nonlinear radar model, and a target model, According to the simulation results, the PPN guidance law has better performances than TPN guidance law under the condition of evasive target.

Impact Angle Control Guidance Synthesis for Evasive Maneuver against Intercept Missile

  • Yogaswara, Y.H.;Hong, Seong-Min;Tahk, Min-Jea;Shin, Hyo-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.719-728
    • /
    • 2017
  • This paper proposes a synthesis of new guidance law to generate an evasive maneuver against enemy's missile interception while considering its impact angle, acceleration, and field-of-view constraints. The first component of the synthesis is a new function of repulsive Artificial Potential Field to generate the evasive maneuver as a real-time dynamic obstacle avoidance. The terminal impact angle and terminal acceleration constraints compliance are based on Time-to-Go Polynomial Guidance as the second component. The last component is the Logarithmic Barrier Function to satisfy the field-of-view limitation constraint by compensating the excessive total acceleration command. These three components are synthesized into a new guidance law, which involves three design parameter gains. Parameter study and numerical simulations are delivered to demonstrate the performance of the proposed repulsive function and guidance law. Finally, the guidance law simulations effectively achieve the zero terminal miss distance, while satisfying an evasive maneuver against intercept missile, considering impact angle, acceleration, and field-of-view limitation constraints simultaneously.

Missile closing velocity estimation based on the LOS rate measurement (수동형 탐색기의 시선 각속도 측정을 이용한 접근속도 추정)

  • 탁민제;류동영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.268-273
    • /
    • 1991
  • Missile and target closing velocity is used in the proportional navigation(PN) missile guidance loop. But it is difficult to estimate the closing velocity when passive seeker is used and only the Line-of-Sight(LOS) rate is available in the guidance loop. In this study, new closing velocity estimation method is developed. This method uses LOS rate measurement only and uses some characteristics of PN guidance law. The Lyapunov method is used to analyze the stability of the developed estimation method.

  • PDF

The closed-form solution and its approximation of the optimal guidance law (최적유도법칙의 closed-form 해와 근사식)

  • 탁민제;박봉규;선병찬;황인석;조항주;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.572-577
    • /
    • 1992
  • In this paper, the optimal homing guidance problem is investigated for the general missile/target models described in the state-space. The closed-form solution of the optimal guidance law derived, and its asymptotic properties are studied as the time-to-go goes to infinity or zero. Futhermore, several approximate solutions of the optimal guidance law are suggested for real-time applications.

  • PDF

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

New guidance law for air-to-air missile

  • Baba, Yoriaki;Takehira, Tetsuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.456-461
    • /
    • 1993
  • In this paper, a new guidance law for a short-range air-to-air missile with constant thrust is presented. It is essentially based on the concept of proportional navigation. First, the theoretical guidance law is derived. Then, we show the technique for practical implementation of the guidance law. By a computer simulation, it is shown that the new guidance law gives better performance than the conventional proportional navigation.

  • PDF

Error analysis of a missile system with command to line-of-sight guidance law (시선지령식 유도방법을 사용한 유도무기시스템의 오차해석)

  • 이규택;이연석;이장규;장상근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.389-394
    • /
    • 1991
  • The surface-to-air missile system using Command to Line-Of-Sight (CLOS) guidance law is represented by complex nonlinear differential equations with 6 degree-of-freedom. This paper presents the characterictics of missile system and the effect of various error sources by Monte-Carlo simulation method. By simulation the part of playing a main role in the surface-to-air missile system is radar. Therefore for the performance of missile system the development of the technique reducing the error of radar is required. And the effect of accelerometer error is a few large, too. But, because accelerometer costs cheap this problem is solved easily. And the main error source of missile system data is the thrust, which affects directly to acceleration. The result is the important information about designing and fabricating missile system. And this makes the missile system best because of sharing elaborate and expense effectively.

  • PDF