• Title/Summary/Keyword: Guaranteed scheduling

Search Result 85, Processing Time 0.028 seconds

Worst-case Guaranteed Scheduling Algorithm for HR-WPAN (HR-WPAN을 위한 Worst-case Guaranteed Scheduling Algorithm)

  • Kim, Je-Min;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.270-276
    • /
    • 2007
  • The proposed LDS(Link-status Dependent Scheduling) algorithm in HR-WPAN(High Rate-Wireless Personal Area Network) up to now aims at doing only throughput elevation of the whole network, when the crucial device is connected with worst-link relatively, throughput of this device becomes aggravation. The proposed the WGS(Worst-case Guaranteed Scheduling) algorithm in this paper guarantees throughput of the device which is connected with worst-link in a certain degree as maintaining throughput of all devices identically even if a link-status changes, decreases delay of the whole network more than current LDS algorithm. Therefore proposed WGS algorithm in this paper will be useful in case of guaranteeing throughput of a device which is connected worst-link in a certain degree in a design of HR-WPAN hereafter.

Worst-case Guaranteed Scheduling algorithm for HR-WPAN (HR-WPAN을 위한 Worst-case Guaranteed Scheduling algorithm)

  • Kim, Je-Min;Lee, Jong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.249-251
    • /
    • 2007
  • The proposed LDS(Link-status Dependent Scheduling) algorithm in HR-WPAN up to now aims at doing only throughput elevation of the whole network, when the crucial DEV(Device) is connected with worst-link relatively, throughput of this DEV becomes aggravation, The proposed the WGS(Worst-case Guaranteed Scheduling) _algorithm in this paper guarantees throughput of the DEV which is connected with worst-link in a certain degree as maintaining throughput of all DEVs identically even if a link-status changes, decreases delay of the whole network more than current LDS algorithm Therefore proposed WGS algorithm in this paper will be useful in case of guaranteeing throughput of a DEV which is connected worst-link in a certain degree in a design of HR-WPAN hereafter.

  • PDF

Guaranteed Dynamic Priority Assignment Schemes for Real-Time Tasks with (m, k)-Firm Deadlines

  • Cho, Hyeon-Joong;Chung, Yong-Wha;Park, Dai-Hee
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.422-429
    • /
    • 2010
  • We present guaranteed dynamic priority assignment schemes for multiple real-time tasks subject to (m, k)-firm deadlines. The proposed schemes have two scheduling objectives: providing a bounded probability of missing (m, k)-firm constraints and maximizing the probability of deadline satisfactions. The second scheduling objective is especially necessary in order to provide the best quality of service as well as to satisfy the minimum requirements expressed by (m, k)-firm deadlines. We analytically establish that the proposed schemes provide a guarantee on the bounded probability of missing (m, k)-firm constraints. Experimental studies validate our analytical results and confirm the effectiveness and superiority of the proposed schemes with regard to their scheduling objectives.

QoS-Guaranteed Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.;Kim, Jin-Up
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.481-488
    • /
    • 2009
  • This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality-of-service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS-aware fair (QF) scheduling within a QoS group and an antenna trade-off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade-off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade-off scheme combined with QF scheduling can improve the probability of QoS-guaranteed transmission when supporting different QoS groups.

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.87-101
    • /
    • 2013
  • In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.

A Hierarchical Round-Robin Algorithm for Rate-Dependent Low Latency Bounds in Fixed-Sized Packet Networks (고정크기 패킷 네트워크 환경에서 할당율에 비례한 저지연 한계를 제공하는 계층적 라운드-로빈 알고리즘)

  • Pyun Kihyun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.254-260
    • /
    • 2005
  • In the guaranteed service, a real-time scheduling algorithm must achieve both high level of network utilization and scalable implementation. Here, network utilization indicates the number of admitted real-time sessions. Unfortunately, existing scheduling algorithms either are lack of scalable implementation or can achieve low network utilization. For example, scheduling algorithms based on time-stamps have the problem of O(log N) scheduling complexity where N is the number of sessions. On the contrary, round-robin algorithms require O(1) complexity. but can achieve just a low level of network utilization. In this paper, we propose a scheduling algorithm that can achieve high network utilization without losing scalability. The proposed algorithm is a Hierarchical Round-Robin (H-RR) algorithm that utilizes multiple rounds with different interval sizes. It provides latency bounds similar to those by Packet-by-Packet Generalized Processor Sharing (PGPS) algorithm using a sorted-Priority queue. However, H-RR requires a constant time for implementation.

An Integer Programming Approach to the Subway Daily Crew Scheduling Problem (지하철 일간승무계획문제의 정수계획해법)

  • 변종익;이경식;박성수;강성열
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.67-86
    • /
    • 2002
  • This paper considers subway crew scheduling problem. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper. we propose two basic techniques that solve the subway crew scheduling problem in a reasonable time, though the optimality of the solution is not guaranteed. We develop an algorithm that solves the column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational result for a real instance is reported.

Cell Scheduling Algorithm for Internet Service over ATM Networks (ATM 망에서 인터넷 서비스를 위한 셀 스케줄링 알고리즘)

  • Cho, Hae-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.238-244
    • /
    • 2007
  • Guaranteed Frame Rate(GFR), recently approved by the ATM Forum, expects to become an important service category to efficiently support TCP/IP traffic in ATM networks. The GFR service not only guarantees a minimum service rate at the frame level, but also supports a fair share of available bandwidth. We proposed new scheduling scheme for the GFR service. Proposed scheme provides priority to VCs and high priority to a VC which have more untagged cells in buffer. High priority VCs have much more serviced than low priority. Proposed scheme can provide MCR(minimum cell rate) guarantee and fair sharing to GFR VCs. Computer simulation results show that proposed scheduling scheme provide a much better performance in TCP goodput and fairness than previous scheme.

A Web-based QoS-guaranteed Traffic Control system (웹 기반의 QoS 보장형 트래픽 제어 시스템)

  • 이명섭;신경철;류명춘;박찬현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.45-48
    • /
    • 2002
  • This paper presents a QoS-guaranteed traffic control system which supports QoS of realtime packet transmission for the multimedia communication. The traffic control system presented in this paper applies the integrated service model and provides QoS o(packet transmission by means of determining the packet transmission rate with the policy of network manager and the optimal resource allocation according to the end-to-end traffic load. It also provides QoS for the realtime packet transmission through the AWF2Q+ Scheduling algorithm and per-class queuing method.

  • PDF

A New Joint Packet Scheduling/Admission Control Framework for Multi-Service Wireless Networks

  • Long Fei;Feng Gang;Tang Junhua
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.408-416
    • /
    • 2005
  • Quality of service (QoS) provision is an important and indispensable function for multi-service wireless networks. In this paper, we present a new scheduling/admission control frame­work, including an efficient rate-guaranteed opportunistic scheduling (ROS) scheme and a coordinated admission control (ROS­CAC) policy to support statistic QoS guarantee in multi-service wireless networks. Based on our proposed mathematical model, we derive the probability distribution function (PDF) of queue length under ROS and deduce the packet loss rate (PLR) for individual flows. The new admission control policy makes admission decision for a new incoming flow to ensure that the PLR requirements of all flows (including the new flow) are satisfied. The numerical results based on ns-2 simulations demonstrate the effectiveness of the new joint packet scheduling/admission control framework.