• Title/Summary/Keyword: Growth-inhibitor

Search Result 1,018, Processing Time 0.026 seconds

Growth Inhibition of Human Lung Carcinoma Cells by ${\beta}>-lapachone$ through Induction of Apoptosis (Tabebuia avellanedae에서 유래된 ${\beta}>-lapachone$의 인체폐암세포 apoptosis 유발에 관한 연구)

  • Choi, Byung-Tae;Lee, Yong-Tae;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.722-728
    • /
    • 2005
  • The DNA topoismerase I inhibitor ${\beta}-lapachone$, the product of a lapacho tree (Tabebuia avellanedae) from South America, activates a novel apoptotic response in a number of cell lines. In the present report, we investigated the effects of ${\beta}-lapachone$ on the growth of human lung in human non-small-cell-lung-cancer A549 cells. Upon treatment with ${\beta}-lapachone$, a concentration-dependent inhibition of cell viability and cell proliferation was observed as measured by hemocytometer counts and MTT assay. The ${\beta}-lapachone-treated$ cells developed many of the hallmark features of apoptosis, including membrane shrinking, condensation of chromatin and DNA fragmentation. These apoptotic effects of ${\beta}-lapachone$ in A549 cells were associated with a marked induction of pro-apoptotic Bax expression, however the levels of anti-apoptotic Bcl-2 expression were decreased in a dose-dependent manner. Accordingly, elevated amount of cyclin-dependent kinase inhibitor p21 expression accompanied by up-regulation of tumor suppressor p53 was observed. By RT-PCR analyses, decrease in gene expression level of telomerase reverse transcriptase and telomeric repeat binding factor were also observed. Thus, these findings suggest that ${\beta}-lapachone$ may be a potential anti-cancer therapeutics for the control of human lung cancer cell model.

$Na^{+}$-dependent NADH:quinone Oxidoreductase in the Respiratory Chain of the Marine Bacterium Marinomonas vaga

  • Kim, Young-Jae;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.391-396
    • /
    • 1996
  • The Gram-negative marine bacterium Marinomonas vaga, which requires 0.5 M NaCl concentration for optimal growth, is slightly halophilic. The growth of M vaga was highly resistant to the proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP) under alkaline pH conditions (pH 8.5) but very sensitive to CCCP under acidic pH conditions (pH 6.5). These results suggest that the respiratory chain-linked NADH oxidase system of M. vaga may lead to generation of a $Na^{+}$ electrochemical gradient. In order to examine the existence of $Na^{+}$-stimulated NADH oxidase in M. vaga, membrane fractions were prepared by the osmotic lysis method. The membrane-bound NADH oxidase oxidized both NADH and deamino-NADH as substrates and required $Na^{+}$ for maximum activity. The maximum activity of NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl. The site of $Na^{+}$-dependent activation in the NADH oxidase system was at the NADH:quinone oxidoreductase segment. The NADH oxidase and NADH:quinone oxidoreductase were very sensitive to the respiratory chain inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) in the presence of 0.2 M NaCl but highly resistant to another respiratory inhibitor, rotenone. Based on these findings, we conclude that M. vaga possesses the $Na^{+}$-dependent NADH:quinone oxidoreductase that may function as an electrogenic $Na^{+}$ pump.

  • PDF

Angiogenesis Inhibitor Derived from Angiostatin Active Sites

  • Park, Kyoung-Soo;Lim, Dong-Yeol;Park, Sang-Don;Kim, Min-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1331-1335
    • /
    • 2004
  • Angiogenesis is essential for the growth and persistence of solid tumors. Their metastases, anti-angiogenesis could lead to the suppression of tumor growth. One of the main strategies of cancer treatment is developing molecules of anti-angiogenic activity. In this study, two angiogenic inhibitors, Ang3 (KLFDF) and Ang4 (XLFDF) derived from KLYDY, which is the sequence of angiostatin active sites kringle 5, were designed and synthesized. Previously we reported the activities and structures of two inhibitors, Ang1 (KLYDY) and Ang2 (KLWDF). In order to investigate the effect of Phe substitution, Ang3 was designed with a sequence of KLFDF. In order to reduce conformational flexibility of side chain in Lys, Ang4 was designed with a sequence of XLFDF, where X has amino substituted phenyl ring. Solution structures of those inhibitors were investigated using NMR spectroscopy and their activities as angiogenesis inhibitors were studied. Ang1 and Ang2 show angiogenic activities, while Ang3 and Ang4 have no activities and have extended structures compared to Ang1 and Ang2. Therefore, Phe rings do not have effective hydrophobic interactions with other aromatic residues in Ang3 and Ang4. The representative structure of Ang2 has a stable intramolecular hydrogen bond. Therefore, intramolecular hydrogen bonding might be more important in stabilizing the structure than the hydrophobic interactions in these inhibitors. More rigid structure, which can be expected to have higher activities and better match with the receptor bound conformations, can be obtained with a constrained cyclic structure. Further peptidomimetic approaches should be tried to develop angiogenesis inhibitors.

Isolation and Characterization of a New Hydrogen Sulfide-Oxidizing Bacterium Thiobacillus Sp. (황화수소 산화세균인 새로운 Thiobacillus sp.의 분리 및 특성)

  • Cha, Jin-Myeong;Lee, In-Hwa
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.252-257
    • /
    • 1994
  • A new hydrogen sulfide-oxidation bacterium, Thiobacillus sp. was isolated from waste coal mine water around Hawsun in Chunnam province. The isolate was motile gram-negative rod shape, formed spore and grew up to be aerobically facultative chemolithotroph by using energy released from the oxidation of reduced inorganic sulfur compounds. It could assimilate various kinds of organic compounds and grew well upon thiosulfate-supplemented basal medium. To the lelvel of 32 mM in thiosulfate concentration, thiosulfate in itself was utilized as energy source for growth. However, from those of the higher concentration than 32 mM, thiosulfate functioned specifically as the substrate inhibitor rather than as the energy source. It was found that the optimum thiosulfate concentration for growth was 32 mM. The G+C content of the DNA was 65.0 mol%. The isolate had 16 : 1 + 17$_{cyc}$, 16 : 0 as their major non-hydroxylated cellular fatty acids, 3-OH 12 : 0 as a hydroxylated fatty acid and also contained unidentified $C_{18}$ branched fatty acid. The ubiquinone system in the respiratory chain was Q-9. Based on the physiological and biochemical characteristics, the isolate was assigned to a novel species of the genus Thiobacillus sp. iw.

  • PDF

Effects of Methylglyoxal on the Growth Dynamics of Secenedesmus quadricauda (Methylglyoxal 이 Scenedesmus quadricauda 의 성장 역학에 미치는 영향)

  • Rhie, Ki-Tae
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.17-30
    • /
    • 1995
  • The growth of Scenedesmus quadricauda (Trup.) Breb. is enhanced by methylyoxal (MG), a general inhibitor of cell division, at threshold concentration in conjunction with reatment timing relative to growth stage. The stimulatory effect of MG on algal cell growth was most significant with 2.27-fold of untreated algal culture in cell number when 0.5 mM of MG was added to the algal culture at the beginning of logarithmic phase with an initial MG concentration of 0.535 mg $MG/10^6cell$. A Specific growth rates (SGRs) of MG-treated cultures were rapidly increased at the beginning of logarithmic phase with 1.89-fold of untreated algal culture. Cultures inoculated with high cell numbers of 2.4 to 4.8 X $10^4$ cells/ml were less sensitive to 0.5 mM of MG treatment. The algal cell division was ranged from 0.392 to 0.924 mg MG/106 cell. If the cell number of an algal culture at the time of inoculation was low (0.6 X $10^4$ cells/ml) and MG was added before logarithmic phase, the cell number of 0.5 mM of MG-treated cultures were lower than those of controls. In algal cultures treated with high concentrations of MG (1.0 mM and 2.0 mM), the algal growth was inhibited. Photosynthetic rate of growth-enhanced algal by 0.5 mM of MG was significantly higher than that of untreated or 1.0 mM of MG-treated algal cell, while there was no significant difference among those groups in respiratory rate. Pyruvate concentration in 0.5 mM of MG-treated culture was incrcased agter methylglyoxal trcatment.

  • PDF

Comparison of growth performance and related gene expression of muscle and fat from Landrace, Yorkshire, and Duroc and Woori black pigs

  • Bosung Kim;Yejin Min;Yongdae Jeong;Sivasubramanian Ramani;Hyewon Lim;Yeonsu Jo;Woosang Kim;Yohan Choi;Sungkwon Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.160-174
    • /
    • 2023
  • The purpose of this study was to compare marbling score, meat quality, juiciness, sarcomere length, and skeletal muscle satellite cell (SMSC) growth and related gene expression between Woori black pig (WB) and the Landrace, Yorkshire, and Duroc (LYD) crossbreed at different body weights (b.w.). WB was developed to improve meat quality and growth efficiency by crossbreeding Duroc with Korean native black pig. A total of 24 pigs were sacrificed when their b.w. reached about 50, 75, 100, and 120 kg. SMSC were isolated from the femoris muscles, and muscle and adipose tissues were sampled from the middle and the subcutaneous part of the femoris of hind legs, respectively. Expression levels of genes including Myoblast determination protein 1 (MyoD), Paired box gene 3 (Pax3), Myosin heavy chain (MyHC), and Myogenin, which are responsible for the growth and development of SMSC, were higher in LYD than the WB. Muscle growth inhibitor myostatin (MSTN), however, was expressed more in WB compared to LYD (p < 0.01). Numbers of SMSC extracted from femoris muscle of LYD at 50, 75, 100, and 120 kg b.w. were 8.5 ± 0.223, 8.6 ± 0.245, 7.2 ± 0.249, and 10.9 ± 0.795, and those from WB were 6.2 ± 0.32, 6.2 ± 0.374, 5.3 ± 0.423, and 17.1 ± 0.315, respectively. Expression of adipogenic genes in adipose tissue including CCAAT/enhancer-binding protein (CEBP)-β, peroxisome proliferator activated receptor (PPAR)-γ, and fatty acid synthase (FASN), were greater in WB when compared with LYD (p < 0.01). Results from the current study suggest that different muscle cell numbers between 2 different breeds might be affected by related gene expression and this warrants further investigation on other growth factors regulating animal growth and development.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases

  • Sarafeddinov, Alla;Arif, Atia;Peters, Anna;Fuchsbauer, Hans-Lothar
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.617-626
    • /
    • 2011
  • Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at $42^{\circ}C$, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the $28^{\circ}C$ culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower $K_i$ (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.

p38 MAPK Signaling Mediates Mitochondrial Apoptosis in Cancer Cells Induced by Oleanolic Acid

  • Liu, Jia;Wu, Ning;Ma, Lei-Na;Zhong, Jia-Teng;Liu, Ge;Zheng, Lan-Hong;Lin, Xiu-Kun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4519-4525
    • /
    • 2014
  • Oleanolic acid (OA) is a nutritional component widely distributed in various vegetables. Although it has been well recognized for decades that OA exerts certain anti-tumor activity by inducing mitochondria-dependent apoptosis, it is still unclear that what molecular signaling is responsible for this effect. In this study, we employed cancer cell lines, A549, BXPC-3, PANC-1 and U2OS to elucidate the molecular mechanisms underlying OA anti-tumor activity. We found that activation of MAPK pathways, including p-38 MAPK, JNK and ERK, was triggered by OA in both a dose and time-dependent fashion in all the tested cancer cells. Activation was accompanied by cleavage of caspases and PARP as well as cytochrome C release. SB203580 (p38 MAPK inhibitor), but not SP600125 (JNK inhibitor) and U0126 (ERK inhibitor), rescued the pro-apoptotic effect of OA on A549 and BXPC-3 cells. OA induced p38 MAPK activation promoted mitochondrial translocation of Bax and Bim, and inhibited Bcl-2 function by enhancing their phosphorylation. OA can induce reactive oxygen species (ROS)-dependent ASK1 activation, and this event was indispensable for p38 MAPK-dependent apoptosis in cancer cells. In vivo, p38 MAPK knockdown A549 tumors proved resistant to the growth-inhibitory effect of OA. Collectively, we elucidated that activation of ROS/ASK1/p38 MAPK pathways is responsible for the apoptosis stimulated by OA in cancer cells. Our finding can contribute to a better understanding of molecular mechanisms underlying the antitumor activity of nutritional components.

Blockage of Autophagy Rescues the Dual PI3K/mTOR Inhibitor BEZ235-induced Growth Inhibition of Colorectal Cancer Cells

  • Oh, Iljoong;Cho, Hyunchul;Lee, Yonghoon;Cheon, Minseok;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on $G_1$ arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at $Ser^{473}$ and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at $Tyr^{204}$. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.