Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.9.1331

Angiogenesis Inhibitor Derived from Angiostatin Active Sites  

Park, Kyoung-Soo (Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University)
Lim, Dong-Yeol (Department of Applied Chemistry, Sejong University)
Park, Sang-Don (Department of Applied Chemistry, Sejong University)
Kim, Min-Young (AngiLab, Inc.)
Kim, Yang-Mee (Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
Angiogenesis is essential for the growth and persistence of solid tumors. Their metastases, anti-angiogenesis could lead to the suppression of tumor growth. One of the main strategies of cancer treatment is developing molecules of anti-angiogenic activity. In this study, two angiogenic inhibitors, Ang3 (KLFDF) and Ang4 (XLFDF) derived from KLYDY, which is the sequence of angiostatin active sites kringle 5, were designed and synthesized. Previously we reported the activities and structures of two inhibitors, Ang1 (KLYDY) and Ang2 (KLWDF). In order to investigate the effect of Phe substitution, Ang3 was designed with a sequence of KLFDF. In order to reduce conformational flexibility of side chain in Lys, Ang4 was designed with a sequence of XLFDF, where X has amino substituted phenyl ring. Solution structures of those inhibitors were investigated using NMR spectroscopy and their activities as angiogenesis inhibitors were studied. Ang1 and Ang2 show angiogenic activities, while Ang3 and Ang4 have no activities and have extended structures compared to Ang1 and Ang2. Therefore, Phe rings do not have effective hydrophobic interactions with other aromatic residues in Ang3 and Ang4. The representative structure of Ang2 has a stable intramolecular hydrogen bond. Therefore, intramolecular hydrogen bonding might be more important in stabilizing the structure than the hydrophobic interactions in these inhibitors. More rigid structure, which can be expected to have higher activities and better match with the receptor bound conformations, can be obtained with a constrained cyclic structure. Further peptidomimetic approaches should be tried to develop angiogenesis inhibitors.
Keywords
Angiogenesis inhibitor; Kringle; CAM assay; Peptidomimetics; Structure;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Bergers, G.; Javaherian, K.; Lo, K.; Folkman, J.; Hanahan, D.Science 1999, 284, 808.   DOI   ScienceOn
2 Gibaldi, M. J. Clin. Pharmacol. 1998, 38(10), 898.   DOI   ScienceOn
3 O'Reilly, M. S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R. A.; Cao, Y.; Moses, M.; Lane, W. S.; Sage, E. H.; Folkman, J. Cold Spring Harb. Symp. Quant. Biol. 1994, 59, 471.
4 Wuthrich, K.; Billeter, M.; Braun, W. J. Mol. Biol. 1983, 169,949.   DOI
5 Clore, G. M.; Gronenborn, A. M.; Nilges, M.; Ryan, C. A.Biochemistry 1987, 26, 8012.   DOI   ScienceOn
6 Kuszewski, J.; Nilges, M.; Brünger, A. T. J. Biomol. NMR 1992, 2,33.   DOI   ScienceOn
7 Davidson, D. J. et al. International patent WO 97/41824.
8 Derome, A.; Willamson, M. J. Magn. Reson. 1990, 88, 177.
9 Lee, H.; Kim, H. K.; Lee, J. H.; You, W. K.; Chung, S. I.; Chang,S. I.; Park, M. H.; Hong, Y. K.; Joe, Y. A. Arch. Biochem. Biophys.2000, 375(2), 359.   DOI   ScienceOn
10 Knoche, L. M. J. Am. Chem. Soc. 1984, 106, 3863.   DOI
11 Chang, Y.; Mochalkin, I.; McCance, S. G.; Cheng, B.; Tulinsky,A.; Castellim, F. J. Biochemistry 1998, 37(10), 3258.   DOI   ScienceOn
12 Suh, H. S.; Jung, E.-J.; Kim, T.-H.; Lee, H.-Y.; Park, Y.-H.; Kim,K.-W. Cancer Letters 1997, 113, 117.   DOI   ScienceOn
13 Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.
14 Bodenhausen, G.; Ruben, D. J. J. Chem. Phys. Lett. 1980, 69, 185.   DOI   ScienceOn
15 Gellman, S. H.; Adams, B. R.; Dado, G. P. J. Am. Chem. Soc.1990, 112, 460.   DOI
16 Nilges, M.; Clore, G. M.; Gronenborn, A. M. FEBS Lett. 1988,229, 317.   DOI   ScienceOn
17 Gasparini, G. Drugs 1999, 58(1), 17.   DOI   ScienceOn
18 Lu, H.; Dhanabal, M.; Volk, R.; Waterman, M. J.; Ramchandran,R.; Knebelmann, B.; Segal, M.; Sukhatme, V. P. Biochem.Biophys. Res. Commun. 1999, 258, 668.   DOI   ScienceOn
19 Park, K.; Baek, D.; Lim, D.; Park, S.; Kim, M.; Park, Y.; Kim, Y.Bull. Korean Chem. Soc. 2001, 22, 984.
20 Wuthrich, K. NMR of Protein and Nucleic Acid; Wiley-Interscience: New York, 1986.
21 Folkman, J. Harvey Lect. Ser 1998, 92, 65.
22 Ji, W. R.; Barrientos, L. G.; Llinas, M.; Gray, H.; Villarreal, X.;DeFord, M. E.; Castellino, F. J.; Kramer, R. A.; Trail, P. A.Biochem. Biophys. Res. Commun. 1998, 247(2), 414.   DOI   ScienceOn
23 Brunger, A. T. X-PLOR Manual, Version 3.1; Yale University:New Haven, CT.
24 Folkman, J. Nat. Med. 1995, 1, 27.   DOI   ScienceOn
25 Sim, B. K.; O'Reilly, M. S.; Liang, H.; Fortier, A. H.; He, W.;Madsen, J. W.; Lapcevich, R.; Nacy, C. A. Cancer Res. 1997,57(7), 1329.
26 Strawn, L. M.; McMahon, G.; App, H.; Schreck, R.; Kuchler, W.R.; Longhi, M. P.; Hui, T. H.; Tang, C.; Levitzki, A.; Gazit, A.;Chen, I.; Keri, G.; Orfi, L.; Risau, W.; Flamme, I.; Ullrich, A.;Hirth, K. P.; Shawver, L. K. Cancer Res. 1996, 56, 3540.
27 Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 63, 207.
28 Clore, G. M.; Gronenborn, A. M. CRC Crit. Rev. Biochem. Mol.Biol. 1989, 24, 479.   DOI   ScienceOn
29 Cao, Y.; Chen, A.; An, S. S.; Ji, R. W.; Davidson, D.; Llinas, M. J.Biol. Chem. 1997, 272, 22924.   DOI   ScienceOn
30 Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95.   DOI   ScienceOn
31 Clore, G. M.; Gronenborn, A. M. Protein Sci. 1994, 3, 372.   DOI   ScienceOn