• Title/Summary/Keyword: Growth yield enhancement

Search Result 84, Processing Time 0.031 seconds

Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit

  • Im, Ju-Sung;Cho, Kwang-Soo;Cho, Ji-Hong;Park, Young-Eun;Cheun, Chung-Gi;Kim, Hyun-Jun;Cho, Hyun-Mook;Lee, Jong-Nam;Jin, Yong-Ik;Byun, Myung-Ok;Kim, Dool-Yi;Kim, Myeong-Jun
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.154-162
    • /
    • 2012
  • This study was conducted to evaluate agronomic characteristics such as growth, quality, and yields of StMyb1R-1 transgenic potato and also to obtain the basic data for establishing assessment guidelines of transgenic potato. Three transgenic lines (Myb 1, Myb 2, and Myb 8) were cultivated under conventional irrigation, drought condition, and severe drought condition and were analyzed by comparing with wild type, non-transgenic cv. Superior. Myb 2 showed a different flower color from wild type and Myb 1 had much bigger secondary leaflets than wild type. Myb 1 and Myb 2 showed higher $P_2O_5$ content in both top and root zone and longer shaped tubers than wild type. In yield factors, transgenic lines had more tubers than wild type, however their yield decreases were severe because of the poor enlargement of tuber under water deficit condition. This tendency was noticeable in Myb 1 and Myb 2. In TR ratio, chlorophyll content, dry matter rate, and relative water content, there were no big differences between transgenic lines and wild type. Meanwhile, in phenotype, growth, quality, and yield factors, substantial equivalent was confirmed between Myb 8 and wild type. Then, Myb 8 showed the highest marketable tuber yield under conventional irrigation, while showed lower level than wild type under water deficit. Judged by this result, the enhancing droughttolerance by StMyb1R-1 gene might actually not mean the enhancement of photosynthesis or starch accumulation in tuber and, furthermore, not the yield improvement. More detailed research will be required to accurately understand the relationship between StMyb1R-1 and yield factors.

Enhancement of ${\beta}$-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation

  • Park, Hyun;Ka, Kang-Hyeon;Ryu, Sung-Ryul
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • The effectiveness of three kinds of enzymes (chitinase, ${\beta}$-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the ${\beta}$-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the ${\beta}$-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.

Effect of Carbofuran on Rice Growth (식물생장조절제(植物生長調節劑) Carbofuran이 벼 생육(生育)에 미치는 영향(影響))

  • Kim, Soon-Chul
    • Korean Journal of Weed Science
    • /
    • v.7 no.1
    • /
    • pp.98-106
    • /
    • 1987
  • The effect of carbofuran (2, 3-Dihydro-2,2-dimethyl-benzofuran-7-ylmethyl carbamate) on rice growth was evaluated as a direct growth stimulant of rice. For this, several laboratory and field trials conducted from 1981 to 1986 at the Yeongnam Crop Experiment Station. Carbofuran solution affected the germination of rice seed. The growth of seminal roots was adversely affected by the increase of carbofuran concentrations while the length of single root became longer with the concentration increment up to 50 ppm. Carbofuran application (0.18g ai/$m^2$) at the rice nurserybed significantly enhanced the rice growth and recovered from the Low temperature damage. The enhancement effect was more pronounced at the plot that applied carbofuran before rice seeding as soil incorporation than top-dressing. The effect of growth enhancement further extended to transplanted lowland rice. This effect was greater at double cropping area (late of June transplanting) compared to single cropping area (May transplanting). Among important agronomic traits, the increment of panicle number was the most important direct effect for increasing rice grain yield by carbofuran application. Carbofuran application also exhibited the reducing effect against low temperature damage at reductive division stage and at rice heading stage and against submergence damage at booting stage through enhancement of fertile grain ratio, ripening ratio or photosynthetic activity.

  • PDF

Productivity of the Rice Plants at the Abandoned Crop Field Established from the Shattered Grains by Combine Harvesting (Combine 수확시 탈락볍씨의 경련 휴경조건하 자연상태에서의 수량성)

  • 허상만;임준택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • The rice plants (Oryza sativa L.) established from the shattered grains by combine harvesting at the previous year showed great variations of yield and yield components from site to site at the abandoned rice crop field. The cultural condition was very similar to direct seeding under no-tillage system but no cultural practices such as application of fertilizer, weed control, irrigation and drainage had been carried out. The highest yield of 188kg/10a was observed at one of the quadrats randomly located on the field, which showed the possibility of exploitation of no-tillage system. The interrelationship between crop growth and coverage of weed species was measured by calculating the correlation coefficients. The investigations of how to establish sufficient number of seedlings per unit area, plant succession on the abandoned crop field, crop mixture with legume crops, and breeding appropriate plant type of rice for the enhancement of competitive ability would be required for the success of no-tillage system.

  • PDF

Effect of preharvest application of chitosan on the growth and quality of peach fruit (Prunus persica L.)

  • Bae, Tae-Min;Seo, Joung-Seok;Kim, Jin-Gook;Kim, Do-Kyung;Chun, Jong-Pil;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.601-614
    • /
    • 2018
  • Chitosan with a natural antimicrobial property has been introduced to protect horticultural crops from diseases as an environmentally friendly method. The purpose of this study was to investigate the effects of the pre-harvest application of chitosan on growth and quality during the late stage of fruit development and on the simulated marketing of the peach fruit (Prunus persica L.). The application of chitosan with calcium chloride ($100mg{\cdot}L^{-1}$) three times at one week intervals 4 weeks before the harvest significantly increased the fruit weight, changed the fruit shape, and reduced the fruit length/diameter ratio giving the peach fruits a round oblate shape. The calcium treatment contributed to enhancing or maintaining the storage potential by increasing the flesh firmness. However, at higher concentrations of $CaCl_2$, i.e., > $600mg{\cdot}L^{-1}$, the positive effects of the chitosan application were offset, and fruit growth was not affected by calcium alone. The application of the chitosan/calcium mixture delayed fruit softening; however, this effect was shortened when the storage temperature was $20^{\circ}C$ rather than $15^{\circ}C$. The internal quality of the fruit was profoundly affected by the concentration of calcium added to the chitosan, and delayed fruit maturation was observed at a higher concentration of calcium. The pre-harvest application of chitosan with calcium contributes to the enhancement of food safety by inhibiting the occurrence of diseases during postharvest handling. Considering the above results, chitosan has the potential to improve both the yield of peach fruits and their storability. Because chitosan can enhance the freshness and shelf-life of fresh produce, it is necessary to examine its effects on other horticultural crops.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Comparison of the growth characteristics of Aurcularia auricula-judae according to gamma ray irradiation dose (감마선 조사량에 따른 Aurcularia auricula-judae의 생육특성 비교)

  • Jeong-Heon Kim;Jin-Woo Lee;Tae-Min Park;Soon-Jae Kwon;Chang-Hyun Jin;Youn-Jin Park;Myoung-Jun Jang
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.247-253
    • /
    • 2023
  • In this study, we examined the effects of gamma irradiation dosage on the mycelial growth of Auricularia auricula-judae and performed analyses of fruiting body yield, growth characteristics, taste, fragrance, and mineral composition. Assessments of mycelial growth in response to gamma irradiation at different intensities revealed an enhancement in the growth of fungi exposed to irradiation at 200 Gy. Fruiting body yield was also highest at 200 Gy, followed by 800 Gy and the control group. On the basis of these observations, we subsequently applied gamma ray doses of 200 and 800 Gy to examine the effects of irradiation on fungal quality characteristics. In terms of the taste of fruiting bodies, we detected no significant differences among the control, 200 Gy, and 800 Gy groups. Contrastingly, with respect to fragrance, we found that fungi treated with 200 Gy were characterized by a pattern that differed from those of the control and other treatment groups. Furthermore, whereas we detected no significant difference among treatments with respect total dietary fiber content, calcium content was found to be higher in the treatment groups compared with the control group, with the highest content being measured in fungi exposed to 800 Gy irradiation. Copper content was confirmed to be higher in the control group, whereas there were no significant differences between the fungi irradiated with 200 and 800 Gy. Contrastingly, the highest levels of zinc were detected in response to 200 Gy irradiation, followed by 800 Gy. Collectively, our findings thus indicate that gamma irradiation can contribute to promoting increases in the fruiting body yield and mineral contents of mushrooms.

Feeding the extra billions: strategies to improve crops and enhance future food security

  • Stamm, Petra;Ramamoorthy, Rengasamy;Kumar, Prakash P.
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • The ability to feed an expanding world population poses one of the greatest challenges to mankind in the future. Accompanying the increased demand for food by the expected nine billion inhabitants of Earth in 2050 will be a continual decrease in arable land area, together with a decline in crop yield due to a variety of stresses. For these formidable challenges to be met, future crops should not only by high-yielding, but also stress-tolerant and disease-resistant. In this review, we highlight the importance of genetic engineering as an indispensable tool to generate just such future crops. We briefly discuss strategies and available tools for biotechnological crop improvement and identify selected examples of candidate genes that may be manipulated so that current biological maxima in yield may be surpassed by comfortable margins. Future prospects and the necessity for basic research aimed at identifying novel target genes are also discussed.

A Study on the Enhancement of Soil Fertility in the Reclaimed Land for Growing Tobacco (연초 재배를 위한 개간지 토양의 비옥도 증진에 관한 연구)

  • 정훈채;조성진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.37-52
    • /
    • 1980
  • Two-year experiment was conducted to investigate the effect of phosphorous, lime, increased compost, and/or boron application on the yield and quality of leaf tobacco growm in the results are summarized as follows; 1) Compared to the conventional treatment, plants grown in the treated plots in the second year showed much better growth and their yield components such as leaf area index and unit leaf weight were much greater. 2) At the end of first year crop, the pH and amount of exchangeable cations in the treated plots reached those in mature soil, but the amount of organic matter and of available phosphorous were still below those of the mature soil. Application of additional compost was more effective in enhancing soil fertility than was additional phosphorous application. 3) The yield of tobacco grown in the second year was 15-20% higher in the treated plots, compared to conventional plot, with high statistical significance. Though the quality of leaf tobacco was not significantly different among treatments, the increase of 3-7% was obtained in the treated plot. The highest total income(yield x price/kg) came from the plot treated with additional compost and phosphorous application (adjusted at 3% level on the basis of phosphorous absorption coefficient), which produced 34% more than the conventional plot.

  • PDF