DOI QR코드

DOI QR Code

Feeding the extra billions: strategies to improve crops and enhance future food security

  • Stamm, Petra (Department of Biological Sciences, Faculty of Science, National University of Singapore) ;
  • Ramamoorthy, Rengasamy (Department of Biological Sciences, Faculty of Science, National University of Singapore) ;
  • Kumar, Prakash P. (Department of Biological Sciences, Faculty of Science, National University of Singapore)
  • Received : 2010.12.13
  • Accepted : 2011.01.02
  • Published : 2011.04.30

Abstract

The ability to feed an expanding world population poses one of the greatest challenges to mankind in the future. Accompanying the increased demand for food by the expected nine billion inhabitants of Earth in 2050 will be a continual decrease in arable land area, together with a decline in crop yield due to a variety of stresses. For these formidable challenges to be met, future crops should not only by high-yielding, but also stress-tolerant and disease-resistant. In this review, we highlight the importance of genetic engineering as an indispensable tool to generate just such future crops. We briefly discuss strategies and available tools for biotechnological crop improvement and identify selected examples of candidate genes that may be manipulated so that current biological maxima in yield may be surpassed by comfortable margins. Future prospects and the necessity for basic research aimed at identifying novel target genes are also discussed.

Keywords

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94. https://doi.org/10.1126/science.1118642
  2. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117-2129. https://doi.org/10.1105/tpc.108.058941
  3. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656-660. https://doi.org/10.1016/j.cub.2008.04.034
  4. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636-37645. https://doi.org/10.1074/jbc.M605895200
  5. Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429-442. https://doi.org/10.1023/A:1026561029533
  6. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. https://doi.org/10.1038/35048692
  7. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741-745. https://doi.org/10.1126/science.1113373
  8. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1-8. https://doi.org/10.1016/j.plaphy.2008.10.002
  9. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473-488. https://doi.org/10.1007/s11103-008-9435-0
  10. Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706-716. https://doi.org/10.1104/pp.001057
  11. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299-305. https://doi.org/10.1016/j.bbrc.2006.12.027
  12. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191-2198. https://doi.org/10.1007/s10529-008-9811-5
  13. Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol (Stuttgart) 8:314-325. https://doi.org/10.1055/s-2006-924120
  14. Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547-556. https://doi.org/10.1046/j.1365-313X.1999.00410.x
  15. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739-1751. https://doi.org/10.1104/pp.106.094532
  16. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131-136. https://doi.org/10.1016/j.nbt.2009.07.006
  17. Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151
  18. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21-37. https://doi.org/10.1023/A:1020780022549
  19. Dong K, Chen B, Li Z, Dong Y, Wang H (2010) A characterization of rice pests and quantification of yield losses in the japonica rice zone of Yunnan, China. Crop Prot 29:603-611. https://doi.org/10.1016/j.cropro.2010.01.007
  20. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2-9. https://doi.org/10.1111/j.1467-7652.2009.00459.x
  21. Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750-1761. https://doi.org/10.1104/pp.109.137943
  22. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433-442. https://doi.org/10.1046/j.1365-313x.1998.00310.x
  23. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854-1865. https://doi.org/10.1104/pp.124.4.1854
  24. Godge MR, Kumar D, Kumar PP (2008) Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Rep 27:1497-1507. https://doi.org/10.1007/s00299-008-0576-z
  25. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
  26. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639-648. https://doi.org/10.1104/pp.006478
  27. Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238-245.
  28. Halliday KJ, Koornneef M, Whitelam GC (1994) Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol 104:1311-1315.
  29. Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell 21:1328-1339. https://doi.org/10.1105/tpc.109.066969
  30. Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11:130-137. https://doi.org/10.1016/S0958-1669(00)00071-9
  31. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041-1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x
  32. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243-2254. https://doi.org/10.1105/tpc.105.030973
  33. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987-12992. https://doi.org/10.1073/pnas.0604882103
  34. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010.
  35. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793-800. https://doi.org/10.1038/nature03895
  36. Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin $3\beta$-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909-8914. https://doi.org/10.1073/pnas.141239398
  37. Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed Sci 52:215-218. https://doi.org/10.1270/jsbbs.52.215
  38. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106. https://doi.org/10.1126/science.280.5360.104
  39. Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M, Kim J (2010) A subset of cytokinin twocomponent signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371-23386. https://doi.org/10.1074/jbc.M109.096644
  40. Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485-495.
  41. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287-291. https://doi.org/10.1038/7036
  42. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346-350. https://doi.org/10.1093/pcp/pch037
  43. Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. JARQ 37:71-76.
  44. Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373-382. https://doi.org/10.1016/j.tplants.2009.04.005
  45. Kim JB, Kang JY, Kim SY (2004a) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459-466. https://doi.org/10.1111/j.1467-7652.2004.00090.x
  46. Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004b) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75-87. https://doi.org/10.1111/j.1365-313X.2004.02192.x
  47. Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191-204. https://doi.org/10.1111/j.1399-3054.2009.01304.x
  48. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
  49. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406.
  50. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443-462. https://doi.org/10.1146/annurev-arplant-042809-112116
  51. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497-523. https://doi.org/10.1093/pcp/pcq027
  52. Morinaka Y (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924-931. https://doi.org/10.1104/pp.106.077081
  53. Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113-1128. https://doi.org/10.1104/pp.103.036749
  54. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439. https://doi.org/10.1126/science.1126088
  55. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650-655.
  56. Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275-285. https://doi.org/10.1016/j.cropro.2003.10.001
  57. Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol Plantarum 138:10-21. https://doi.org/10.1111/j.1399-3054.2009.01292.x
  58. Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30-39. https://doi.org/10.2174/138920210790217927
  59. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/ AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035-1046.
  60. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) "Green revolution" genes encode mutant gibberellin response modulators. Nature 400:256-261. https://doi.org/10.1038/22307
  61. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi- Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042-1052. https://doi.org/10.1093/pcp/pch118
  62. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x
  63. Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174-180. https://doi.org/10.1016/j.pbi.2009.12.004
  64. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865-879. https://doi.org/10.1093/pcp/pcn061
  65. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633-654.
  66. Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372-379. https://doi.org/10.1016/j.pbi.2007.06.003
  67. Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225-232. https://doi.org/10.1016/j.envexpbot.2010.05.011
  68. Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651-661. https://doi.org/10.1111/j.1469-8137.2008.02689.x
  69. Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263-284. https://doi.org/10.1007/s10142-006-0032-5
  70. Sakamoto T (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res 15:399-404. https://doi.org/10.1007/s11248-006-0024-1
  71. Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508-1516. https://doi.org/10.1104/pp.125.3.1508
  72. Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909-913. https://doi.org/10.1038/nbt847
  73. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105-109.
  74. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071-1078. https://doi.org/10.1038/nature08122
  75. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701-702. https://doi.org/10.1038/416701a
  76. Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12:57-62. https://doi.org/10.1016/j.pbi.2008.09.004
  77. Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823-3838. https://doi.org/10.1105/tpc.109.069906
  78. Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283:1455c.
  79. Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348-351. https://doi.org/10.1016/j.chom.2008.05.009
  80. Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889-2903. https://doi.org/10.1093/jxb/erq147
  81. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776-790. https://doi.org/10.1105/tpc.104.024950
  82. Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669-680. https://doi.org/10.1104/pp.109.140806
  83. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818-822. https://doi.org/10.1126/science.1183700
  84. Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
  85. To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85-92.
  86. Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447-462. https://doi.org/10.1007/s10142-010-0178-z
  87. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784-1790. https://doi.org/10.1016/j.cub.2007.09.025
  88. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589-602. https://doi.org/10.1007/s11103-008-9340-6
  89. Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610-614. https://doi.org/10.1016/j.tplants.2005.10.008
  90. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532-2550. https://doi.org/10.1105/tpc.014928
  91. Wolters H, Ju¨rgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305-317.
  92. Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893-902. https://doi.org/10.1046/j.1365-3040.2000.00611.x
  93. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar $Na^+/H^+$ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf $Na^+$. Plant Sci 167:849-859. https://doi.org/10.1016/j.plantsci.2004.05.034
  94. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88-94.
  95. Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270-279. https://doi.org/10.1016/j.tplants.2009.02.007
  96. Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625-634.
  97. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ra¨tsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068-1082. https://doi.org/10.1111/j.1365-313X.2009.03835.x
  98. Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430-440. https://doi.org/10.1016/S1369-5266(03)00081-5
  99. Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241-249. https://doi.org/10.1007/s11103-010-9609-4
  100. Zhang Z, Zhang H, Quan R, Wang X-C, Huang R (2009) Transcriptional regulation of the Ethylene Response Factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365-377. https://doi.org/10.1104/pp.109.135830
  101. Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455-465. https://doi.org/10.1007/s11032-009-9385-5

Cited by

  1. Manipulation of plant architecture to enhance lignocellulosic biomass vol.2012, pp.None, 2011, https://doi.org/10.1093/aobpla/pls026
  2. Medical and Biological Engineering in the Next 20 Years: The Promise and the Challenges vol.60, pp.7, 2011, https://doi.org/10.1109/tbme.2013.2264829
  3. Plant hormones and their intricate signaling networks: unraveling the nexus vol.32, pp.6, 2013, https://doi.org/10.1007/s00299-013-1435-0
  4. RICE RESEARCH TO BREAK YIELD BARRIERS vol.11, pp.1, 2011, https://doi.org/10.1142/s0219607715500032
  5. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges vol.9, pp.None, 2011, https://doi.org/10.3389/fpls.2018.00617
  6. CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges vol.3, pp.1, 2011, https://doi.org/10.2478/mjhr-2020-0002
  7. How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies vol.766, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2020.142608