References
- Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91-94. https://doi.org/10.1126/science.1118642
- Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117-2129. https://doi.org/10.1105/tpc.108.058941
- Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656-660. https://doi.org/10.1016/j.cub.2008.04.034
- Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636-37645. https://doi.org/10.1074/jbc.M605895200
- Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429-442. https://doi.org/10.1023/A:1026561029533
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815. https://doi.org/10.1038/35048692
- Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741-745. https://doi.org/10.1126/science.1113373
- Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1-8. https://doi.org/10.1016/j.plaphy.2008.10.002
- Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473-488. https://doi.org/10.1007/s11103-008-9435-0
- Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706-716. https://doi.org/10.1104/pp.001057
- Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299-305. https://doi.org/10.1016/j.bbrc.2006.12.027
- Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191-2198. https://doi.org/10.1007/s10529-008-9811-5
- Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol (Stuttgart) 8:314-325. https://doi.org/10.1055/s-2006-924120
- Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547-556. https://doi.org/10.1046/j.1365-313X.1999.00410.x
- Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739-1751. https://doi.org/10.1104/pp.106.094532
- Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131-136. https://doi.org/10.1016/j.nbt.2009.07.006
- Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151
- Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21-37. https://doi.org/10.1023/A:1020780022549
- Dong K, Chen B, Li Z, Dong Y, Wang H (2010) A characterization of rice pests and quantification of yield losses in the japonica rice zone of Yunnan, China. Crop Prot 29:603-611. https://doi.org/10.1016/j.cropro.2010.01.007
- Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2-9. https://doi.org/10.1111/j.1467-7652.2009.00459.x
- Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750-1761. https://doi.org/10.1104/pp.109.137943
- Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433-442. https://doi.org/10.1046/j.1365-313x.1998.00310.x
- Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854-1865. https://doi.org/10.1104/pp.124.4.1854
- Godge MR, Kumar D, Kumar PP (2008) Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Rep 27:1497-1507. https://doi.org/10.1007/s00299-008-0576-z
- Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
- Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639-648. https://doi.org/10.1104/pp.006478
- Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238-245.
- Halliday KJ, Koornneef M, Whitelam GC (1994) Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol 104:1311-1315.
- Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: How an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell 21:1328-1339. https://doi.org/10.1105/tpc.109.066969
- Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11:130-137. https://doi.org/10.1016/S0958-1669(00)00071-9
- Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041-1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x
- Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243-2254. https://doi.org/10.1105/tpc.105.030973
- Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987-12992. https://doi.org/10.1073/pnas.0604882103
- Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999-1010.
- International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793-800. https://doi.org/10.1038/nature03895
-
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin
$3\beta$ -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909-8914. https://doi.org/10.1073/pnas.141239398 - Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed Sci 52:215-218. https://doi.org/10.1270/jsbbs.52.215
- Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106. https://doi.org/10.1126/science.280.5360.104
- Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M, Kim J (2010) A subset of cytokinin twocomponent signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371-23386. https://doi.org/10.1074/jbc.M109.096644
- Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485-495.
- Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287-291. https://doi.org/10.1038/7036
- Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346-350. https://doi.org/10.1093/pcp/pch037
- Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. JARQ 37:71-76.
- Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373-382. https://doi.org/10.1016/j.tplants.2009.04.005
- Kim JB, Kang JY, Kim SY (2004a) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459-466. https://doi.org/10.1111/j.1467-7652.2004.00090.x
- Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004b) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75-87. https://doi.org/10.1111/j.1365-313X.2004.02192.x
- Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191-204. https://doi.org/10.1111/j.1399-3054.2009.01304.x
- Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
- Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406.
- Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443-462. https://doi.org/10.1146/annurev-arplant-042809-112116
- Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497-523. https://doi.org/10.1093/pcp/pcq027
- Morinaka Y (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924-931. https://doi.org/10.1104/pp.106.077081
- Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113-1128. https://doi.org/10.1104/pp.103.036749
- Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439. https://doi.org/10.1126/science.1126088
- Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650-655.
- Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275-285. https://doi.org/10.1016/j.cropro.2003.10.001
- Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol Plantarum 138:10-21. https://doi.org/10.1111/j.1399-3054.2009.01292.x
- Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30-39. https://doi.org/10.2174/138920210790217927
- Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/ AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035-1046.
- Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) "Green revolution" genes encode mutant gibberellin response modulators. Nature 400:256-261. https://doi.org/10.1038/22307
- Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi- Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042-1052. https://doi.org/10.1093/pcp/pch118
- Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54-69. https://doi.org/10.1111/j.1365-313X.2007.03034.x
- Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174-180. https://doi.org/10.1016/j.pbi.2009.12.004
- Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865-879. https://doi.org/10.1093/pcp/pcn061
- Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633-654.
- Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372-379. https://doi.org/10.1016/j.pbi.2007.06.003
- Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225-232. https://doi.org/10.1016/j.envexpbot.2010.05.011
- Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651-661. https://doi.org/10.1111/j.1469-8137.2008.02689.x
- Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263-284. https://doi.org/10.1007/s10142-006-0032-5
- Sakamoto T (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res 15:399-404. https://doi.org/10.1007/s11248-006-0024-1
- Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508-1516. https://doi.org/10.1104/pp.125.3.1508
- Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909-913. https://doi.org/10.1038/nbt847
- Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105-109.
- Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071-1078. https://doi.org/10.1038/nature08122
- Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701-702. https://doi.org/10.1038/416701a
- Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12:57-62. https://doi.org/10.1016/j.pbi.2008.09.004
- Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823-3838. https://doi.org/10.1105/tpc.109.069906
- Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283:1455c.
- Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348-351. https://doi.org/10.1016/j.chom.2008.05.009
- Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889-2903. https://doi.org/10.1093/jxb/erq147
- Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776-790. https://doi.org/10.1105/tpc.104.024950
- Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669-680. https://doi.org/10.1104/pp.109.140806
- Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818-822. https://doi.org/10.1126/science.1183700
- Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
- To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85-92.
- Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447-462. https://doi.org/10.1007/s10142-010-0178-z
- Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784-1790. https://doi.org/10.1016/j.cub.2007.09.025
- Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589-602. https://doi.org/10.1007/s11103-008-9340-6
- Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610-614. https://doi.org/10.1016/j.tplants.2005.10.008
- Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532-2550. https://doi.org/10.1105/tpc.014928
- Wolters H, Ju¨rgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305-317.
- Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893-902. https://doi.org/10.1046/j.1365-3040.2000.00611.x
-
Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar
$Na^+/H^+$ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf$Na^+$ . Plant Sci 167:849-859. https://doi.org/10.1016/j.plantsci.2004.05.034 - Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88-94.
- Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270-279. https://doi.org/10.1016/j.tplants.2009.02.007
- Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625-634.
- Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ra¨tsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068-1082. https://doi.org/10.1111/j.1365-313X.2009.03835.x
- Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430-440. https://doi.org/10.1016/S1369-5266(03)00081-5
- Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241-249. https://doi.org/10.1007/s11103-010-9609-4
- Zhang Z, Zhang H, Quan R, Wang X-C, Huang R (2009) Transcriptional regulation of the Ethylene Response Factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365-377. https://doi.org/10.1104/pp.109.135830
- Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455-465. https://doi.org/10.1007/s11032-009-9385-5
Cited by
- Manipulation of plant architecture to enhance lignocellulosic biomass vol.2012, pp.None, 2011, https://doi.org/10.1093/aobpla/pls026
- Medical and Biological Engineering in the Next 20 Years: The Promise and the Challenges vol.60, pp.7, 2011, https://doi.org/10.1109/tbme.2013.2264829
- Plant hormones and their intricate signaling networks: unraveling the nexus vol.32, pp.6, 2013, https://doi.org/10.1007/s00299-013-1435-0
- RICE RESEARCH TO BREAK YIELD BARRIERS vol.11, pp.1, 2011, https://doi.org/10.1142/s0219607715500032
- Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges vol.9, pp.None, 2011, https://doi.org/10.3389/fpls.2018.00617
- CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges vol.3, pp.1, 2011, https://doi.org/10.2478/mjhr-2020-0002
- How to enhance the purification performance of traditional floating treatment wetlands (FTWs) at low temperatures: Strengthening strategies vol.766, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2020.142608