• 제목/요약/키워드: Growth signaling

검색결과 1,007건 처리시간 0.03초

Effect of Insulin-like Growth Factor-1 on Bone Morphogenetic Protein-2 Expression in Hepatic Carcinoma SMMC7721 Cells through the p38 MAPK Signaling Pathway

  • Xu, Guan-Jun;Cai, Sheng;Wu, Jian-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1183-1186
    • /
    • 2012
  • Objective: To observe the effect of insulin-like growth factor-1 (IGF-1) on bone morphogenetic protein (BMP)-2 expression in hepatocellular carcinoma SMMC7721 cells. Methods: Cells were divided into blank control, IGF-1, IGF-1 + SB203580, and SB203580 groups. SB203580 was used to block the p38 MAPK signaling pathway. Changes in the expression of BMP-2, p38 MAPK, and phosphorylated p38, MERK, ERK and JNK were determined using reverse transcription polymerase chain reactions (RT-PCR) and Western blot analysis. Results: Protein expression of phosphorylated BMP-2, MERK, ERK, and JNK was significantly up-regulated by IGF-1 compared with the control group ($1.138{\pm}0.065$ vs. $0.606{\pm}0.013$, $0.292{\pm}0.005$ vs. $0.150{\pm}0.081$, $0.378{\pm}0.006$ vs. $0.606{\pm}0.013$, and $0.299{\pm}0.015$ vs. $0.196{\pm}0.017$, respectively; P<0.05). Levels of BMP-2 and phosphorylated MERK and JNK were significantly reduced after blocking of the p38MAPK signaling pathway ($0.494{\pm}0.052$ vs. $0.165{\pm}0.017$, $0.073{\pm}0.07$ vs. $0.150{\pm}0.081$, and $0.018{\pm}0.008$ vs. $0.196{\pm}0.017$, respectively; P<0.05), but such a significant difference was not observed for phosphorylated ERK protein expression ($0.173{\pm}0.07$ vs. $0.150{\pm}0.081$, P>0.05). Conclusion: IGF-1 can up-regulate BMP-2 expression, and p38 MAPK signaling pathway blockage can noticeably reduce the up-regulated expression. We can conclude that the up-regulatory effect of IGF-1 on BMP-2 expression is realized through the p38 MAPK signaling pathway.

Control of ovarian primordial follicle activation

  • Kim, Jin-Yeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권1호
    • /
    • pp.10-14
    • /
    • 2012
  • The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation.

Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications

  • Alanazi, Ibrahim O;Khan, Zahid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.445-453
    • /
    • 2016
  • Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.

Signaling pathways underlying nitrogen transport and metabolism in plants

  • Su Jeong Choi;Zion Lee;Eui Jeong;Sohyun Kim;Jun Sung Seo;Taeyoung Um;Jae Sung Shim
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.56-64
    • /
    • 2023
  • Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers

  • Kang, H.J.;Trang, N.H.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1187-1193
    • /
    • 2015
  • This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.

Protein Kinase D1, a New Molecular Player in VEGF Signaling and Angiogenesis

  • Ha, Chang Hoon;Jin, Zheng Gen
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.

Formation of Sensory Pigment Cells Requires Fibroblast Growth Factor Signaling during Ascidian Embryonic Development

  • Kim, Gil-Jung
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.221-225
    • /
    • 2003
  • The tadpole larva of the ascidian Halocynthia roretzi has two sensory pigment cells in its brain vesicle. To elucidate the temporal requirement for FGF signaling in formation of the pigment cells, embryos were treated with an FGF receptor 1 inhibitor, SU5402, or an MEK inhibitor, U0126 during various embryonic stages. In the present study, it is shown that the embryos treated with SU5402 from the 16-cell stage to the early gastrula stage do not form pigment cells, whereas those treated after the early gastrula stage form pigment cells. In pigment cell formation, embryos suddenly exhibited the sensitivity to SU5402 only for 1 h at the neural plate stage(-4 h after the beginning of gastrulation). When U0126 treatment was carried out at various stages between the 8-cell and late neurula stages, the embryos scarcely formed pigment cells. Pigment cell formation occurred when the embryos were placed in U0126 at early tail bud stage. These results indicate that FGF signaling is involved in pigment cell formation at two separate processes during ascidian embryogenesis, whereas more prolonged period is required for MEK signaling.

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

  • Han, Yong-Seok;Lee, Jun Hee;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.225-232
    • /
    • 2015
  • We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis

  • Kim, Suji;Lim, Jae Hyang;Woo, Chang-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • 제37권4호
    • /
    • pp.269-276
    • /
    • 2020
  • Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.