• Title/Summary/Keyword: Growth of Particles

검색결과 876건 처리시간 0.027초

에어로졸 반응기에서 산화아연 입자의 응집 성장 (The growth of zinc oxide particles by coagulation in aerosol reactor)

  • 이종호;송신애;박승빈
    • 한국입자에어로졸학회지
    • /
    • 제4권2호
    • /
    • pp.69-75
    • /
    • 2008
  • Nanosize ZnO particles were prepared by oxidation of zinc vapor and the particle growth was modeled by a coagulation model by assuming that the characteristic time for reaction was much shorter than coagulation time and residence time (${\tau}_{reaction}{\ll}{\tau}_{coagulation}{\ll}{\tau}_{residence}$). Experimental measurement of zinc oxide particles diameter was consistent with the predicted result from the coagulation model. For practical purpose of predicting zinc oxide size in areosol reactor, the constant kernel solution is concluded to be sufficient, Uniqueness of nano-scale property of zinc oxide was confirmed by the higher photocatalytic activity of zinc oxide than nanosize titania particles.

  • PDF

페라이트계 스테인레스강의 STICKING 발생 및 성장기구 (Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel)

  • 진원;최점용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF

2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성 (Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003)

  • 이용섭;도날드 콜린스
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.

Frit에서의 나노사이즈 α-Fe2O3 입자의 결정 성장 (Crystal growth of nanosized α-Fe2O3 particles in frit)

  • ;최은경;이원준;문원진;김응수;황광택;조우석
    • 한국결정성장학회지
    • /
    • 제28권2호
    • /
    • pp.69-73
    • /
    • 2018
  • $100^{\circ}C$에서 0.03 M $FeCl_3$ 용액을 이용하여 수열법으로 제조한 80~90 nm의 ${\alpha}-Fe_2O_3$ 나노크기 입자의 결정 성장이 유연 frit 및 무연 frit에서 조사되었다. 두 종류의 frit 내에 있는 나노사이즈 ${\alpha}-Fe_2O_3$ 입자를 $800^{\circ}C$로 가열하였고 frit 내의 ${\alpha}-Fe_2O_3$ 입자의 평균 입경이 각각 200~210 nm과 150~160로 증가했다. 또한 ${\alpha}-Fe_2O_3$의 응집과 소결로 인해 결정 성장이 촉진된다는 사실도 확인되었다. 직경이 100 nm를 초과하는 큰 입자의 형성 비는 무연 frit에서 54 %, Pb가 함유된 유연 frit에서는 85 %였다. $800^{\circ}C$에서 frits 내에 있는 ${\alpha}-Fe_2O_3$ 입자를 가열함으로써, 평균 직경 7~9 nm의 기공이 ${\alpha}-Fe_2O_3$ 입자 내에 형성되었다. 이들 기공은 원래의 ${\alpha}-Fe_2O_3$ 입자 내의 한층 더 미세한 기공들로 구성된 다공성 구조에서 유래되었고, 소결 중 이들 미세 기공들은 입자에 갇혀있는 상태에서 서로 결합하여 7~9 nm의 기공 크기로 성장하였다.

TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석 (Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor)

  • 김동주;김교선
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.131-136
    • /
    • 2011
  • A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.

Effect of Particles Drift on Dendritic Growth

  • Park, Min Sik;Im, Dongmin
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권2호
    • /
    • pp.53-57
    • /
    • 2014
  • With the use of diffusion-limited aggregation modeling, we have investigated the effect of particle drift for dendritic growth. It is found that the morphology of dendritic growth is sensitive to the particle drift, i.e., the larger drift effect results in the denser growth of dendrite. From the analysis using the correlation function, we found the fractional dimension of each dendrite increases as the particles drift increases. Furthermore, we showed the height of dendrite significantly decrease for the slight change of particles drift. Finally, we discussed the strategy to reduce dendritic growth by modifying the transport properties of electrolytes.

Bimodal 방법을 이용한 하전입자 응집 모델링 (Development of Simple Bimodal Model for Charged Particle Coagulation)

  • 김상복;송동근;홍원석;신완호
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.27-31
    • /
    • 2014
  • A simple bimodal model has been developed to analyze charged particle coagulation by modifying previously suggested bimdal model for evolution of particle generation and growth. In the present model, two monodisperse modes are used and 40 charge nodes are assigned to each mode to account both change of the particle size and charge distribution. In addition, we also implemented the effect of electrostatic dispersion loss in the present model. Based on the developed model, we analyzed coagulation of asymmetric bipolar charged particles by computing evolutions of particle number concentration, geometric mean diameter of particles, charge asymmetric ratio and geometric standard deviation of particle size distribution for various initial charge asymmetric ratios. The number concentration of asymmetric bipolar charged particles decreases faster than that of neutral particles but that does not give faster growth of particles since the electrostatic dispersion loss overwhelms particle growth by coagulation.

SO2 제거를 위한 유전체 장벽 방전 - 광촉매 복합 공정에서의 입자 형성과 성장 (Particle Formation and Growth in Dielectric Barrier Discharge - Photocatalysts Hybrid Process for SO2 Removal)

  • 나소노바 안나;김동주;김교선
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.127-132
    • /
    • 2010
  • We analyzed the effects of several process variables on the $SO_2$ removal and particle growth by the dielectric barrier discharge - photocatalysts hybrid process. In this process, $SO_2$ was converted into the ammonium sulfate ($(NH_4)_2SO_4$) particles. The size and crystallinity of ammonium sulfate particles were examined by using TEM and XRD analysis. The dielectric barrier discharge reactor consisted of two zones: the first is for plasma generation and the second is for ammonium sulfate particles formation and growth. The first zone of reactor was filled with glass beads as a dielectric material. To enhance $SO_2$ removal process, the $TiO_2$ photocatalysts were coated on glass beads by dip-coating method. As the voltage applied to the plasma reactor or the pulse frequency of applied voltage increases, the $SO_2$ removal efficiency increases. Also as the initial concentration of $SO_2$ decreases or as the residence time increases, the $SO_2$ removal efficiency increases. $(NH_4)_2SO_4$ particles continue to grow by particle coagulation and surface reaction, moving inside the reactor. Larger particles in site are produced according to the increase of residence time or $SO_2$ concentrations.

  • PDF

환원 석출법을 이용한 모양과 크기가 제어된 금 입자의 제조 (Fabrication of Size- and Shape- Controlled Gold Particles using Wet Chemical Process)

  • 홍소야;이창환;김주용
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.123-131
    • /
    • 2010
  • Shape and size controlled synthesis of gold particles has been studied by using wet-chemical method. When ${AuCl_4}^-$ in aqueous $HAuCl_4$ precursor was reduced using $Na_2SO_3$ as a reducing agent, mixtures of spherical, triangular and hexagonal particles were prepared in a few minutes. It was found that the shape selective oxidative etching by ${AuCl_4}^-\;+\;Cl^-$ anions and crystal growth took place simultaneously. As the ${AuCl_4}^-$ and $Cl^-$ concentration increased, yields of large triangular and hexagonal plate type particles increased, while the spherical particles decreased in most cases. Possible etching and growth mechanisms are discussed.