• Title/Summary/Keyword: Growth furnace

Search Result 291, Processing Time 0.027 seconds

Melt-Crystal Interface Shape Formation by Crystal Growth Rate and Defect Optimization in Single Crystal Silicon Ingot (단결정 실리콘 잉곳 결정성장 속도에 따른 고-액 경계면 형성 및 Defect 최적화)

  • Jeon, Hye Jun;Park, Ju Hong;Artemyev, Vladimir;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • It is clear that monocrystalline Silicon (Si) ingots are the key raw material for semiconductors devices. In the present industries markets, most of monocrystalline Silicon (Si) ingots are made by Czochralski Process due to their advantages with low production cost and the big crystal diameters in comparison with other manufacturing process such as Float-Zone technique. However, the disadvantage of Czochralski Process is the presence of impurities such as oxygen or carbon from the quartz and graphite crucible which later will resulted in defects and then lowering the efficiency of Si wafer. The heat transfer plays an important role in the formation of Si ingots. However, the heat transfer generates convection in Si molten state which induces the defects in Si crystal. In this study, a crystal growth simulation software was used to optimize the Si crystal growth process. The furnace and system design were modified. The results showed the melt-crystal interface shape can affect the Si crystal growth rate and defect points. In this study, the defect points and desired interface shape were controlled by specific crystal growth rate condition.

Single Crystal Growth of Synthetic Emerald by Reflux Method of Temperature Gradient used Natural Beryl (천연베릴을 이용한 온도구배 환류법에 의한 합성 Emerald 단결정 육성)

  • 최의석;김무경;이종민;안영필;서청교;안찬준
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.519-521
    • /
    • 1996
  • Emerald (3BeO.Al2O3.6SiO2 : Cr3+) single crystals were crystals were grown by reflux method of temperature gradient in the flux solution of Li2O-MoO3-V2O5 system. The composition of flux materials were 3 mole ratio of MoO3-V2O5/Li2O, subtituted 0.2 mole% of K2O, Na2O, Nb2O5 etc to Li2O content, solved 10-15% of beryl to flux quantity and doped 1% of Cr2O3 to emerald amount. Those of mixing were melted at 110$0^{\circ}C$ in Pt containers of the 3 zone furnace of melt-growth-return to circulate continniously, specially it has been grown large emerald single crystal when thermal fluctuation was treated for 2hrs of once time a day at 1050-95$0^{\circ}C$ in growth zone, substitutional solid solution effect of Cr+3 ion for Al+3 to the growth of emerald single crystal was good. Emerald single crystals were c(0001) hexagonal crystal face of preferencial growth direction and m(1010) post side. When it had been durated for 5 months emerald single crystals of the firet size of 0.6mm thickness of seed crystal were grown 32$\times$65mm(c x m) of maximum size and 6.2mm thickness.

  • PDF

Growth of Bi2O3 doped ZnO nanostructures fabricated by thermal evaporation method

  • Kim, Gyeong-Beom;Kim, Seon-Hong;Jeong, Yeong-Hun;Lee, Yeong-Jin;Baek, Jong-Hu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.243-243
    • /
    • 2009
  • Bi2O3 doped ZnO nanostructures structure were successfully synthesized by a thermal evaporatiion process and their structural characteristics were investigated. It is demonstrated that the growth condition such as the areal density, pretreatment of the substrates and growth temperature have great influence on the morphology and the alignment of the nanorods arrays. The density of Bi2O3 doped ZnO nanostructures is controlled by the gold (Au) nanoparticle density deposited on the silicon substrates. Relatively homogenous size and shape were observed by introducing gold(Au) seed-layer as nucleation centers on the substrates prior to the VLS reaction. The samples were characterized by X-ray diffraction, scanning electron microscopy.

  • PDF

Growth of $La_{2-x}$$Sr_x$Cu$O_4$Single Crystals for Device Application

  • Tanaka, Isao
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.14-18
    • /
    • 2002
  • We had succeeded to grow bulk sing1e crystals of La/sub 2-x/Sr/sub x/$CuO_4$by the traveling solvent floating zone method (TSFZ), and to prepare La/sub 2-x/Sr/sub x/CuO$_4$single-crystalline thick films on the Zn-doped La$_2$$CuO_4$ substrate by new liquid phase epitaxial technique using an infrared heating furnace (IR-LPE). In this paper, Ireview growth of bulk single crystals and single-crystalline thick films of La/sub 2-x/Sr/sub x/$CuO_4$, and discuss on their device properties to develop high speed integrated electronic devices.

  • PDF

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.

Growth of GaAs Crystal by an Improved VGF Apparatus

  • Chul-Won Han;Kwang-Bo Shim;Young-Ju Park;Seung-Chul Park;Suk-Ki Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 1991
  • The construction details of VGF apparatus with a DM(direct monitoring) furnace for the growth of low defect crystal and characteristics of GaAs crystal grown by this apparatus are described. The average dislocation densities and EL2 concentration of as-grown undoped GaAs along the different solidified fractions exhibit $4{\times}10^{2}-7{\times}10^{3}cm^{-2}$ and $6{\times}10^{14}-4{\times}10^{15}cm^{-3}$, which are less than those observed for liquid encapsulated Czochralski(LEC) or high-pressure vertical gradient freeze(VGF) crystals. These remarkable reduction of the dislocation densities and EL2 concentrations were explained by the lower temperature gradient ($dT/dx-10^{\circ}/cm$) and slower rates of post - growth cooling ($20^{\circ}C/hr:1240-1000^{\circ}C,\;30^{\circ}C/hr:1000-700^{\circ}C$). Also, The Hall mobilities, carrier concentrations show uniform distribution throughtout 80% of the ingot length.

  • PDF

A Study of the Heat Treatment Effect on the Fatigue Crack Growth Behavior in Dissimilar Weld Metal Joints of SA508 Low-Carbon Steel and AISI316 Austenitic Stainless Steel (SA508 저탄소강과 AISI316 오스테나이트강의 이종 용접부 피로균열 성장 거동에 미치는 열처리 영향 연구)

  • Kim, Chung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.16-21
    • /
    • 2018
  • The effect of heat treatment on the fatigue crack growth behavior in welded joints between the heat-affected zone (HAZ) of SA 508 Cl.3 low-alloy steel and HAZ of AISI 316L stainless steel is investigated. When the crack propagates across SA 508 Cl.3 or AISI 316L SS and HAZ into the weldment, the fatigue crack growth rate (FCGR) in the HAZ region does not change or decrease despite the increase in stress intensity factor ${\Delta}K$. The residual stress at the HAZ region is more compressive than that at the base Δ materials and weldment. The effect of the welding residual stress on the crack growth behavior is determined by performing a residual stress relief heat treatment at $650^{\circ}C$ for 1h and subsequent furnace cooling. The FCG behavior in the HAZ region in the as-welded specimen and the residual stress relief heat-treated specimen is discussed in terms of the welding residual stress.

Characterization of Single-walled Carbon Nanotubes Synthesized by Water-assisted Catalytic Chemical Vapor Deposition

  • Lee, Yeon-Ja;Kim, Bawl;Yu, Zhao;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.381-381
    • /
    • 2011
  • The influence of the water vapor on the growth of single-walled carbon nanotubes (SWCNTs) was investigated. SWCNTs were synthesized by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst with injection of water vapor. The morphologies and structures of the water-assisted SWCNTs were investigated according to the growth conditions such as water vapor concentrations, flow rate of the gas, furnace temperature, and growth time. Water-assisted SWCNTs exhibited large bundle morphological features with well-alignment of each CNT, while SWCNTs synthesized in the absence of water vapor showed entangled CNT with the random orientation. We also found that the diameter of the SWCNT bundle could be controlled by the growth condition. In our optimal growth condition, the product yield and the purity were 300 wt. % and 75%, which were 7.5 and 2.5 times higher than those of SWCNTs synthesized without water vapor, respectively. More detail discussion will be offered at the poster presentation.

  • PDF

Investigation of direct growth behavior of carbon nanotubes on alumina powders to use as heat dissipation materials (방열소재 응용을 위한 알루미나 분말 표면 위 탄소나노튜브의 직접 성장 거동 고찰)

  • Jong-Hwan Lee;Hyun-Ho Han;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • As a preliminary study to produce functional nanocomposites in a heat dissipation device, we performed the direct synthesis of carbon nanotubes (CNTs) on the surface of alumina (Al2O3) powders. A thermal chemical vapor deposition (TCVD) system was used to grow CNTs directly on the Al2O3 surface. In order to investigate the growth behavior of CNTs, we varied both furnace temperature of the TCVD ranging from 700 to 850 ℃ and concentration of the ferritin-dissolved DI solution from 0.1 to 2.0 mg/mL. From the previous results, the gas composition and duration time for CNT growth were fixed as C2H4 : H2 = 30 : 500 (vol. %) and 10 min, respectively. Based on the analysis results, the optimized growth temperature and ferritin concentration were found to be 825 ℃ and 0.5 mg/mL, respectively. The obtained results could be adopted to achieve mass production of nanocomposites with heat dissipation functionality.

Effect of Basic Oxygen Furnace Slag used as Structural Filling Materials on the Subsurface Environment (성·복토용으로 사용된 전로제강슬래그가 주변 토양환경에 미치는 영향)

  • Lee, Hosub;Nam, Taekwoo;Jho, Eun Hea;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.6-13
    • /
    • 2016
  • The effect of blast oxygen furnace (BOF) slag used as filling materials on the soil environment was studied using column tests that simulated the flow of the BOF slag leachate through the soil layer. The Cu, Mn, Zn, Ni, and F contents of the leachate affected soil were similar to that of the controls (i.e., soils that were not affected by the leachate). The As, Cd, and Pb contents were lower in the leachate affected soils than the controls. The changes in these contaminants contents can be attributed to the interactions between anions such as alkalinity generating anions (e.g., CO32−, HCO3, OH) or calcium ions with heavy metals or F, which consequently affected the fate of heavy metals and F in the leachate affected soils. The germination and growth of Spinapis alba in the soils affected by the leachate and the controls were also similar. However, the proportion of alkalophilic bacteria in the soils affected by the leachate significantly increased, and this can be explained by the increased soil pH due to the alkaline leachate. Overall, this study shows that the alkalinity of the BOF slag leachate, rather than the presence of heavy metals and F in the leachate, needs to be considered when the BOF slag is to be reused as structural filling materials.