• Title/Summary/Keyword: Growth conditions

Search Result 6,887, Processing Time 0.033 seconds

Culture Conditions for the Mycelial Growth of Ganoderma applanatum

  • Jo, Woo-Sik;Cho, Yun-Ju;Cho, Doo-Hyun;Park, So-Deuk;Yoo, Young-Bok;Seok, Soon-Ja
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.94-102
    • /
    • 2009
  • Ganoderma applanatum is one of the most popular medicinal mushrooms due to the various biologically active components it produces. This study was conducted to obtain basic information regarding the mycelial culture conditions of Ganoderma applanatum. Based on the colony diameter and mycelial density, PDA, YMA and MCM media were suitable for the mycelial growth of the mushroom. The optimum temperature for mycelial growth was found to be $25{\sim}30^{\circ}C$. The optimum carbon and nitrogen sources were mannose and dextrin, respectively, and the optimum C/N ratio was 2 to 10 when 2% glucose was used. Other minor components required for the optimal growth included thiamine-HCl and biotin as vitamins, succinic acid and lactic acid as organic acids, and $MgSO_4$ $7H_2C$, $KH_2PO_4$ and NaCl as mineral salts.

Studies on the Multiplication and Induction of Hybrid Plant in Cremastra appendiculata Use the the Embryo and Tissue Culture (배배양 및 조직배양을 이용한 약난초 (Cremastra appendiculata) 의 증식과 잡종식물의 유도에 관한 연구)

  • 이정석;황백김영준
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 1990
  • It was determined optimal Culture conditions and suitable growth regulators for seed germination, growth of callus, and protoplasts derived from cultured and mesophyll cells in Gremastra appendiculata. Induction of fusion between protoplasts of cultured and mesophyll cells was examined. The best conditions of seed germination and growth of callus were achieved on Hyponex medium contained plant growth regulators(2mg/l 2, 4-D, lmg/l Kinetin). Viability and regeneration of cell wall in protoplasts was determined with fluorescence microscope. Also, fused protoplasts were achieved by using PEG solution between protoplasts of cultured and mesophyll cells.

  • PDF

A classical two sector disequilibrium model of distribution and growth cycles with no long-period equilibrium (고전학파 2부문 불균형동학 모형)

  • Lee, Sangheon
    • 사회경제평론
    • /
    • no.38
    • /
    • pp.51-83
    • /
    • 2012
  • Consider an n goods production economy. Assume the equilibrium condition of Sraffa's price system, a balanced growth condition and the goods market clearing conditions. If both equations are given to determine a real wage rate and investment, the economic system is over-determined. It suggests that there exists no long-period equilibrium to satisfy both labor market and goods market conditions. This paper interprets this situation of over-determinacy as a disequilibrium state, and attempts to solve it through disequilibrium dynamics. It constructs a model of accumulation and real wage rates consistent with Lotka-Volterra system, and shows that the overall growth path fluctuates endogenously around a resting point of long-period disequilibrium.

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Growth and Development of Platycodon grandiflorus under Sensor-based Soil Moisture Control on Open Farmland and Pot Conditions

  • Lee, Ye-Jin;Kim, Kyeong-Soo;Lim, So-Hee;Yu, Young-Beob;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.608-615
    • /
    • 2021
  • Soil moisture control system including soil sensing and automatic water supply chain was constructed on open farmland and pot conditions. Soil moisture was controlled by the system showing over the soil moisture contents except 40% treatment. EC was gradually decreased by increasing cultivation days. On applying this system to control soil moisture, the growth and development characters of the bellflower were improved compared with control, cultivation without the automatic irrigation. Of the growth and development characters, plant height with water treatments was higher than that of control in 1st-year plants. Moreover, numbers of branch were increased by the increased soil moisture on farmland and pot condition. Capsule numbers for seed were best at 20%, 30% soil moisture treatment in 1st-year plants, and 20% to 50% treatment in 2nd-year plants. The construction of automatic soil moisture control system provide fundamental data for plant growth and development on open farmland soil condition.

Effects of light and nutrient on flower formation and vegetative growth of Viola collina

  • Park, Hyekyung;Son, Ga-yeon;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.243-249
    • /
    • 2022
  • Background: Mixed breeding herb Viola collina Besser, which produces both chasmogamous and cleistogamous flower, has limited habitats under closed canopy and short and early flowering timing, making it relatively more vulnerable to climate change. To better understand the effect of light and nutrient on the flower formation and vegetative growth of V. collina, a mesocosm experiment was conducted. Two-by-two factorial treatments of two light conditions (100% and 60% of natural light) and two fertilizer treatment conditions (fertilized and not fertilized) were applied in the mesocosm experiment. Results: The number of flowers, including chamogamous and cleistogamous flowers, was highest (5.65/pot) under 60% light and fertilized condition and lowest (1.41/pot) under 100% light and not-fertilized condition. However, above ground vegetative growth was highest (2.89 g/pot) under 100% light and fertilized condition and lowest (2.38 g/pot) under 60% light and not-fertilized condition. Above ground biomass to belowground biomass ratio was highest (1.50) under 60% light and fertilized condition and lowest (1.26) under 100% light and fertilized condition. Conclusions: This study showed that high light and nutrient are responsible for the vegetative growth, though the effect of fertilizer was reduced due to allocation and retainment of nutrients. In addition, the low light is necessary to make flowers, especially chasmogamous flowers.

Growth Response and Durability of Landscape of Ornamental Miscanthus sinensis Cultivars to Drought, Rain Fall and Low Temperature Condition (건조, 강우, 저온 환경에서 관상용 억새 원예품종의 생장 반응과 경관의 지속성)

  • Ki-Dong Kim;Young-Sun Kim;Jeong-Ho Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Miscanthus sinensis Andersson (Poaceae) cultivars exhibit excellent visual appeal as ornamental grasses and adapt well to diverse environmental conditions. This study focused on assessing the growth response and landscape durability of seven popular Miscanthus cultivars ('Gold Breeze', 'Strictus', 'Morning Light', 'Variegatus', 'Gracillimus', 'Kleine Fontäne', 'Common') under drought, rainfall and low temperature condition. The test cultivars were transplanted and cultivated on research plots in 2013, with data collected from June 2017 to February 2018. Plant materials were categorized into three types based on the amount of the water lost; group I ('Kleine Fontäne', 'Variegatus', 'Strictus'), experiencing the most significant water loss; group II ('Common', 'Gracillimus'); and group III ('Gold Breeze', 'Morning Light') where the least water loss occurred. The drought resistance index (DRI) remained low as water shortage conditions persisted. The lodged angle underwent more pronounced changes in reproductive growth stage than in vegetative growth stage, notably decreasing after heading. Discoloration patterns were classified into two types: group I ('Common', 'Gold Breeze', 'Kleine Fontäne', 'Strictus') and group II ('Gracillimus', 'Morning Light', 'Variegatus') based on the periods of peak duration.

Abnormal Coating Buildup on Si Bearing Steels in Zn Pot During Line Stop

  • Weimin Zhong;Rob Dziuba;Phil Klages;Errol Hilado
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-92
    • /
    • 2024
  • A hot-dip simulator was utilized to replicate abnormal coating buildup observed during line stops at galvanize lines, assessing the influence of processing conditions on buildup (up to 14 mm/side). Steel samples from 19 coils (comprising IF, BH, LCAK, HSLA, DP600-DP1180, Si: 0.006 - 0.8 wt%, P: 0.009 - 0.045 wt%) were examined to explore the phenomenon of heavy coating growth. It was discovered that heavy coating buildup (~3 mm/h) and rapid strip dissolution (~0.17 mm/h) in a GA or GI pot can manifest with specific combinations of steel chemistry and processing conditions. The results reveal the formation of a unique coating microstructure, characterized by a blend of bulky Zeta crystals and free Zn pockets/networks due to the "Sandlin" growth mechanism. Key variables contributing to abnormal coating growth include steel Si content, anneal temperature, dew point in heating and soaking furnaces, Zn pot temperature, Zn bath Al%, and cold-rolling reduction%. At ArcelorMittal Dofasco galvanize lines, an automatic online warning system for operators and special scheduling for incoming Si-bearing steels have been implemented, effectively preventing further heavy buildup occurrences.

Effects of Temperature, Photoperiod and Light Intensity on Growth and Flowering in Eustoma grandiflorum

  • Oh, Wook
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.349-355
    • /
    • 2015
  • Lisianthus (Eustoma grandiflorum) is relatively sensitive to temperature and light conditions. For year round production of good quality potted plants and energy saving, it is necessary to understand the growth and flowering response to the combined conditions of these environmental factors. This study was conducted to examine the growth and flowering responses to temperature, photoperiod, and light intensity during the post-seedling stage. 'El Paso Deep Blue' lisianthus plants with four true leaf pairs were grown in growth chambers maintained at average daily temperatures (ADT) of 14, 20, and $26^{\circ}C$ and provided with three photosynthetic photon fluxes [PPF; 100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$] for 8 (08:00-16:00) and 16 hours (08:00-24:00) by fluorescent and incandescent lamps, resulting in four daily light integrals (DLI): about 3, 6 (two photoperiods), 12 (two photoperiods), and $24mol{\cdot}m^{-2}{\cdot}d^{-1}$. After treatment for three weeks followed by growth for one week in a greenhouse of $20{\pm}3^{\circ}C$, growth and development were measured. Higher temperature, higher PPF, and longer photoperiod promoted plant growth and flowering; however the impacts of PPF and photoperiod were smaller than those of temperature. As ADT and DLI increased, the number of leaves, number of flowers, lateral shoot length, and shoot dry weight increased. An increase of about $1mol{\cdot}m^{-2}{\cdot}d^{-1}$ DLI could constitute an increase of 0.40 to $0.76^{\circ}C$ ADT depending on these crop characteristics when ADT and DLI are above $20^{\circ}C$ and $12mol{\cdot}m^{-2}{\cdot}d^{-1}$, respectively. Therefore, growers can select a regimen of heating or supplemental lighting without delaying harvesting time or decreasing crop quality.

Growth Properties of Tungsten-Bronze Sr1-xBaxNb2O6 Single Crystals (텅스텐 브론즈 Sr1-xBaxNb2O6 단결정의 성장 특성)

  • Joo, Gi-Tae;Kang, Bonghoon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.711-716
    • /
    • 2012
  • Tungsten bronze structure $Sr_{1-x}Ba_xNb_2O_6$ (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of $O_2$ atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is $70^{\circ}C$. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown $Sr_{1-x}Ba_xNb_2O_6$ (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.