• 제목/요약/키워드: Growth Alkaline phosphatase

검색결과 253건 처리시간 0.023초

혈소판유래성장인자와 상피성장인자가 치주인대세포와 골수세포의 성상에 미치는 영향 (Effects of platelet-derived growth factor and epidermal growth factor on the characteristics of beagle dog's periodontal ligament and bone marrow cells)

  • 조병도;허익;박준봉;권영혁;이만섭
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.491-510
    • /
    • 1996
  • This study was performed to evaluate the effects of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) on the characteristics of beagle dog's periodontal ligament (BPD) cells and bone marrow (BBM) cells which have the important role on the early stage of periodontal tissue regeneration in vitro. In control group, the cells ($1.5{\times}10^5$cells/ml) were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum, $50{\mu]g/ml$ ascorbic acid, and 10mM/ml ${\beta}-glycerophosphate$. In experimental groups, growth factors, PDGF or EGF(10ng/ml), were added into the above culture condition. And then each group was characterized by examining the cell proliferation rate, amount of total protein synthesis, alkaline phosphatase activity at 1, 5, 9, 13, 17th day after seeding of cells into the culture wells. The results were as follows: 1. Both BPD and BBM cells in PDGF-treated group proliferated more rapidly than non-treated cells. This finding also was observed in EGF-treated group but it was not as prominent as that of PDGF-treated group. The proliferation rates of both cells showed the time-dependent pattern during experimental periods in all three groups. 2. Amount of total protein synthesis was more increased in PDGF-treated group than in control group. But no significant difference between EGF-treated group and control group was observed throughout experimental periods even though the tendency of amount of protein synthesis was time-dependent pattern. 3. Alkaline phosphatase activity also more increased in PDGF-treated group than control group. But slight decrease tendency was seen in both cells of EGF-treated group. From the above results, PDGF appeared to enhance the proliferation and cellular activities including amount of total protein synthesis and alkaline phosphatase activity of BPD and BBM cell, but EGF did not show notable effects. The optimal application of these growth factors was thought to be useful as the adjunctive means in periodontal regeneration procedures.

  • PDF

Bone Morphogenetic Protein(BMP)이 인체 치주인대 세포의 활성에 미치는 효과 (EFFECTS OF BONE MORPHOGENETIC PROTEIN(BMP) ON HUMAN PERIODONTAL LIGAMENT CELLS IN VITRO)

  • 이성진;윤형진;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제25권3호
    • /
    • pp.623-634
    • /
    • 1995
  • Periodontitis is characterized by gingival inflammation and results in periodontal pocket formation with loss of the supporting alveolar bone and connective tissue around the teeth. Therapeutic modalities should therefore aim not only at eliminating the gingival inflammatory process and preventing the progression of periodontal disease but also at reestablishing and regenerating the periodontal tissue previously lost to the disease. To achieve periodontal regeneration, progenitor cells must migrate to the denuded root surface, attach to it, proliferate and mature into an organized and functional fibrous attachment apparatus. Likewise, progenitor bone cells must also migrate, proliferate, and mature in conjunction with the regenerating periodontal ligament. Significant advances have been made during the last decade in understanding the factors controlling the migration, attachment and proliferation of cells. A group of naturally occuring molecules known as polypeptide growth factors in conjunction with certain matrix proteins are key regulators of these biological events. Of these, the fibroblast growth factor(FGF), platelet-derived growth factor(PDGF) , insulin like growth factor(CIGFs), transforming growth factor(TGFs), epidermal growth factor(EGF) and bone morphogenetic growth factor(BMPs) apper to have an important role in periodontal wound healing. The purpose of this study was to determine the effects of BMP on periodontal ligament cells. Human periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Cultured periodontal ligament cells were treated with BMP. Cellular activities were determined by MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and ALP(alkaline phosphatase) activity. The results were as follows ; Regardless of cultured time, cellular activities were stimulated by BMP. Also, BMP greatly increased alkaline phosphatase(ALP) in periodontal ligament cells. These results suggest that BMP not only have no cytotoxic effect on periodontal ligament cells, but also have osteogenic stimulatory effect on periodontal ligament cells.

  • PDF

7,12-Dimethylbenz(a)anthracene에 의한 흰주 골모세포유사세포의 악성형질전환과 특성에 관한 연구

  • 이진
    • 대한치과의사협회지
    • /
    • 제37권7호통권362호
    • /
    • pp.517-529
    • /
    • 1999
  • 본 연구는 태령 19일된 백서 태자 두 개관에서 분리한 골모세포유사세포에 화학발암물질인 7,12-Dimethylbenz(a)anthracene (DMBA: 0.5 ㎍/ml) 및 tumor promotor인 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 1.0 ㎍/ml)를 단독 혹은 복합 처리하여 PTRCC-DMBA, RCC-DMBA 및 RCC-DMBA-TPA 세포주를 확립시키고, 각 세포의 세포형태, 세포성장곡선, alkaline phosphatase와 acid phosphatase 활성 및 in vitro tumorigenicity를 연구하였다. 또한 c-myc, c-랜, c-jun, p53 및 Rb 유전자의 발현변화와 항암단백질인 p53 및 pRb 단백질의 발현변화를 관찰하여 골모세포유사세포가 악성형질전환되는 분자기전의 일단을 연구하고자 시행하였다. 본 실험에 사용한 모든 세포군에서 높은 aikaline phosphatase 활성과 낮은 acid phosphatase/alkaline phosphatase ratio를 보여 골모세포의 특성을 나타내었다. RCC-DMBA와 RCC-DMBA-TPA 세포는 정상세포나 PTRCC-DMBA에 비해 빠른 성장속도를 보였으며, 또한 SOFT AGAR상에서 colony를 형성하여 anchorage-independent growth를 나타내었다. 화학발암 물질로 악성변형된 세포들은 정상세포나 PTRCC-DMBA 세포에 비해 c-myc 유전자의 과발현이 관찰되었다. 정상세포에서 p53 유전자의 발현은 1.9 kb의 message만이 발현되었다. 그러나 화학발암물질로 형질전환된 세포에서는 1.9 kb message외에도 1.6 kb의 message가 더 발현되었으며, message의 양도 현저히 증가되었다. p53 단백질의 발현은 RCC-DMBA-TPA 세포에서 정상세포에 비해 현저히 감소하였으나, RCC-DMBA 세포에서는 유사한 경향을 보였다. Rb 유전자의 발현은 RCC-DMBA-TPA 세포에서만 현저히 감소하였으나, Rb 단백질의 발현은 정상세포에 비해 형질전환된 세포들에서 모두 현저히 감소되었고, 특히 RCC-DMBA-TPA 세포에서는 거의 발현되지 않았다. 이상의 결과에서 백서 태자 두 개관에서 분리한 골모세포유사세포는 화학발암물질인 DMBA에 의해 악성형질전환이 유도되었으며, c-myc의 과발현 및 p53과 Rb 단백질의 발현감소가 정상 골모세포유사세포의 악성변형과정에 밀접히 연관되어 있음을 시사한다.

  • PDF

꽃사슴의 녹용 성장기간 중 혈액 내 미네랄 및 효소활성 변화에 관한 연구 (A Study on the Changes of Blood Mineral and Enzyme Activity During Growth Period of Velvet Antler in Korean Spotted Deer(Cervus Nippon))

  • 김명화;문상호;이창훈;전병태
    • Journal of Animal Science and Technology
    • /
    • 제45권6호
    • /
    • pp.1031-1038
    • /
    • 2003
  • 본 연구는 축사 내에서 집약적으로 사육되고 있는 꽃사슴의 녹용 성장기간 중의 혈액성분변화와 녹용성장과의 관련성 해석을 위한 기초자료를 제공하고자 수행하였다. 녹용성장기간 중 혈액성분의 변화를 측정하기 위하여 우리 내에서 사육 중인 4${\sim}$6년 생 꽃사슴 웅록 25두를 무작위로 선별하여, 낙각 직후부터 10일 간격으로 절각일(50일)까지 혈액을 채취하여 미네랄과 효소 활성치를 측정하였다. 칼슘과 인의 농도는 녹용성장기간 중 커다란 변동이 없었으며 나트륨, 칼륨, 염소의 농도는 낙각 직후와 녹용성장에 따른 경시적인 유의차가 나타났다. AST, ALT, amylase, CK, GGT 및 LDH의 농도는 낙각 직후와 녹용성장에 따른 유의차는 인정되지 않았으나, ALK-P의 농도는 녹용성장이 진행되면서 계속 증가하여 낙각 후 50일 경에는 최고치를 나타내어 낙각시의 농도와 유의차가 나타났으며(p〈0.01), CK와 LDH의 활성은 다른 동물들보다 높게 나타났다.

수종의 생약제제가 human fetal osteoblasts의 염기성 인산분해 효소 활성에 미치는 영향 (Effects of Several Herbal Medicines on Alkaline Phosphatase Activity in Human Fetal Osteoblasts)

  • 이명구;최희인;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제33권1호
    • /
    • pp.49-60
    • /
    • 2003
  • Several growth factors and polypeptides are not commonly yet used for regenerators of bone tissue or alveolar bone because of the insufficiency of studies on their side effects, genetic engineering for mass production and stability for clinical application. Recently, many herbal medicines, which have advantage of less side effects and possibility of long-term use, have been studied for their capacity and effects of anti-bacterial, antiinflammatory and regenerative potential of periodontal tissues. Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have been traditionally used as medicines for treatment of bone disease in Eastern medicine. The objective of the present study is to examine the ability of alkaline phosphatase (ALP) activity of human fetal osteoblast (hFOB1) when several natural medicines were supplemented. hFOB1 were cultured with Dulbecuo's Modified Eagle's Medium Nutrient Mixture F-12 HAM ( DMEM/F-12 1:1 Mixture, Sigma, USA) and negative control, dexamethasone (positive control), and each natural medicines for 3 days. And then ALP activity was measured by spectrophotometer for enzyme activity and Alizarin red S staining for morphometry. Among the natural medicines of this study, Morindae Radix, Cibotium Barometz (L.) and Cistanchis Herba induced higher activity of ALP synthesis than negative controls in all experimental group. Albizziae Cortex showed mild increases than negative control group. According to measurement of positively stained area, all of the natural medicines of this study increased compared to negative control. Especially, Cibotium Barometz (L.) and Cistanchis Herba showed statistical significance compared to negative control (p<0.05). These results indicate that Morindae Radix, Cibotium Barometz (L.), Albizziae Cortex, Cistandhis Herba have an inducing ability of ALP synthesis on osteoblast.

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young;Choi, Je-Yong;Jeong, Jae-Hwan;Jang, Eun-Sik;Kim, An-Sook;Kim, Seong-Gon;Kwon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.52-56
    • /
    • 2010
  • Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

치주인대세포에 대한 Bone morphogenetic protein-7의 영향 (Effect of BMP-7 on the rat periodontal ligament cell)

  • 김경희;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.289-298
    • /
    • 2005
  • Bone morphogenetic protein-7(BMP-7), a member of the transforming growth factor superfamily, stimulates osteoblast differentiation and bone formation. There are lots of evidences supporting a direct participation of periodontal ligament(PDL) cells on periodontal tissue regeneration. The purpose of this study was to evaluate the effect of recombinant human(rh) BMP-7 on primary rat PDL cells in vitro, with special focus on the ability of bone formation. The PDL cells were cultured with rhBMP-7 at the concentration of 0, 10, 25, 50, 100 and 200ng/ml for MTT assay. We evaluated the alkaline phosphatase activity at 3 and 5 days of incubation and the ability to produce mineralized nodules of rat PDL cells at 14 days of cell culture in concentration of 0, 10, 25, 50 and 100ng/ml. The cell activity was not reduced in cells treated with BMP-7 at $10{\sim}100ng/ml$, whereas the cell activity was reduced in the concentration of 200ng/ml than the control at day 1 and 3(p<0.01). At 3 and 5 day, alkaline phosphatase activity was significantly increased in cells treated with BMP-7 at 50ng/ml and 100ng/ml(p<0.05). The area of mineralized bone nodule was greater in cells treated with BMP-7 at 50 and 100 ng/ml than the control(p<0.01). These results suggest that rhBMP-7 stimulate rat PDL cells to differentiate toward osteoblast phenotype and secretion of the extracellular matrix of rat PDL cells.

Phenolic Compounds from the Fruit Body of Phellinus linteus Increase Alkaline Phosphatase (ALP) Activity of Human Osteoblast-like Cells

  • Lyu, Ha-Na;Lee, Dae-Young;Kim, Dong-Hyun;Yoo, Jong-Su;Lee, Min-Kyung;Kim, In-Ho;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1214-1220
    • /
    • 2008
  • Secondary metabolites from the fruit body of Phellinus linteus were evaluated for their proliferative effect on human osteoblast-like cells. 3-[4,5-Dimethylthiazole-2-y1]-2,5-diphenyl-tetraxolium bromide (MTT) assay and alkaline phosphatase (ALP) activity assay were used to assess the effect those isolates on the human osteoblast-like cell line (Saos-2). Activity-guided fractionation led to the isolation of ALP-activating phenolic compounds through the extraction of P. linteus, solvent partitioning, and repeated silica gel and octadecyl silica gel (ODS) column chromatographic separations. From the result of spectroscopic data including nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as 4-(4-hydroxyphenyl)-3-buten-2-one(1), 2-(3',4'-dihydroxyphenyl)-1,3-benzodioxole-5-aldehyde (2), 4-(3,4-dihydroxyphenyl)-3-buten-2-one (3), 3,4-dihydroxybenzaldehyde (4), and protocatechuic acid methyl ester (5), respectively. This study reports the first isolation of compounds 1-3 and 5 from P. linteus. In addition, all phenolic compounds stimulated proliferation of the osteoblast-like cells and increased their ALP activity in a dose-dependent manner ($10^{-8}$ to $10^{-1}\;mg/mL$). The present data demonstrate that phenolic compounds in P. linteus stimulated mineralization in bone formation caused by osteoporosis. The bone-formation effect of P. linteus seems to be mediated, at least partly, by the stimulating effect of the phenolic compounds on the growth of osteoblasts.

근권에 존재하는 Bacillus 속 균주들의 식물 생장 촉진 활성 특성 (Plant Growth-Promoting Activity Characteristics of Bacillus Strains in the Rhizosphere)

  • 오가윤;김지윤;이송민;김희숙;이광희;이상현;장정수
    • 한국미생물·생명공학회지
    • /
    • 제49권3호
    • /
    • pp.403-412
    • /
    • 2021
  • 본 연구에서는 토양 및 근권에 존재하는 Bacillus 속의 식물 생장 촉진 활성, 식물 병원성 곰팡이의 생장 억제활성, 미네랄 가용화능 및 세포 외 효소활성을 확인해 보고자 하였다. 식물 병원성 곰팡이에 대한 항진균 활성에서 DDP257은 10종의 병원성 곰팡이에서 항진균 활성이 모두 나타났다. 식물 생장 촉진 인자인 indole-3-acetic acid 생성능에서는 ANG20이 70.97 ㎍/ml로 가장 높게 나타났다. 추가적으로 1-aminocyclopropane-1-carboxylate deaminase 생성능 조사에서는 총 10종에서 생성능을 확인하였고, 질소 고정능과 siderophore 생성능 조사에서는 대부분의 분리균주에서 활성을 확인하였다. 이후 분리된 균주에 대하여 phosphate, calcite, zinc과 같은 미네랄 가용화능을 확인하였으며 세포외 효소활성에서도 대부분의 효소에서 활성이 나타났다. 특히 alkaline phosphatase, esterase (C4), acid phosphatase, naphtol-AS-BI-phosphohydrolase에서 선별된 균주 모두 유사한 활성을 보였다. 이는 Bacillus 속이 다양한 유기물과 항생물질 및 세포 외 효소를 분비함으로써 이러한 결과가 나타난 것으로 판단된다. 따라서, 본 연구 결과를 통해 토양의 환경 개선에 기여하는 균주를 활용하여 미생물 제제로써의 가능성을 제시한다.