• Title/Summary/Keyword: Growing process

Search Result 1,767, Processing Time 0.046 seconds

A numerical simulation of radiative heat transfer coupled with Czochralski flow in cusp magnetic field (복사열전달을 고려한 Cusp 자기장이 있는 초크랄스키 단결정 성장 공정의 유동에 관한 연구)

  • Kim, Tae-Ho;Lee, You-Seop;Chun,Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.988-1004
    • /
    • 1996
  • The characteristics of flow and oxygen concentration are numerically studied in Czochralski 8" silicon crystal growing process considering radiative heat transfer. The analysis of net radiative heat flux on all relevant surfaces shows growing crystal affects the heater power. Furthermore, the variation of the radiative heat flux along the crystal surface in the growing direction is confirmed and should be a cause of thermal stress and defect of the crystal. The calculated distributions of temperature and, heat flux along the wall boundaries including melt/crystal interface, free surface and crucible wall indicate that the frequently used assumption of the thermal boundary conditions of insulated crucible bottom and constant temperature at crucible side wall is not suitable to meet the real physical boundary conditions. It is necessary, therefore, to calculate radiative heat transfer simultaneously with the melt flow in order to simulate the real CZ crystal growth. If only natural convection is considered, the oxygen concentration on the melt/crystal interface decreases and becomes uniform by the application of a cusp magnetic filed. The heater power needed also increases with increasing the magnetic field. For the case of counter rotation of the crystal and crucible, the magnetic field suppresses azimutal flow produced by the crucible rotation, which results in the higher oxygen concentration near the interface.

Studies on the Properties of Mechanical Pulp from Italian Poplar Wood(Populus euramericana I-476) by the Age of Tree (수령(樹齡)에 의한 포플러펄프의 성질(性質)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Jo, Byoung-Muk;Ahn, Won-Yong;Moon, Chang-Guk;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.168-179
    • /
    • 1982
  • The first step to utilize the growing resources of Italian poplar (Populus euramericana I-476) for pulp-Woods, its characteristics and adaptabilities to the pulp industry must be investigated completely. The plantation methods are important for its fast growing in stock, and no less important is the cutting age for its utilization as pulpwood. In this paper, the stone groundwood pulping, refiner groundwood pulping and chemi-groundwood pulping characteristics by the age of tree, along with their physical and chemical characterstics were tested, and relationships between the age groups were analyzed to find out the optimum felling age. The results obtained are as follows: 1. The coefficient of pliability was a little higher in the case of younger trees. 2. The water retention value of each pulp was directly proportional to its physical strength, but this tendency was not detected between the age groups of sample woods. 3. Generally, the physical strength of younger wood pulp was lower regardless of the pulping process. But in the case of pretreatment with NaOH, Asphund and CGP pulp from 5 year old sample wood were stronger in physical strengths than those of GP and Asplund pulp with no pretreatment from 10 years old sample wood. 4. The tear factor of Asplund pulp with alkali pretreatment was higher than that of CGP pulp but the breaking length and the burst factor was similar in all processes. Considering the pulp yield and its brightness, CGP process seems to be advantageous. 5. The dissimilarity of physical strength between 7 and 10 years old wood pulp was not very large in all pulping processes but the physical strength of 5 year old wood pulp was very weak. In the of groundwood pulping from Italian poplar woods, 5 year old wood pulp should be mixed with other long fiber pulp for making a good paper.

  • PDF

Preparation of corundum ($\alpha$-Al_{2}O_{3}$) by hydrothermal growing process : I. A study on the effects of reaction temperature and seed crystal (수열성장법에 의한 코런덤($\alpha$-Al_{2}O_{3}$) 제조 : I. 반응온도와 종자결정의 영향에 관한 연구)

  • 반종성;이기정;서경원;목영일;이철경
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.129-140
    • /
    • 1996
  • In this study, we have prepared corundum ($\alpha$-Al_{2}O_{3}$) single crystals from aluminum hydroxides by hydrothermal growing process and have investigated the reaction conditions. The hydrothermal conditions were mainly affected by reaction temperature, seed crystal and reaction time. Especially, seed crystal has strong effects on the particle size and crystallity of products. By adding seed crystal in Japanese gibbsite solution as the nutrient, hydrothermal reaction was performed for 2 hours at the reaction temperature of $460^{\circ}C$, to produce corundum powders which had weight mean particle diameter of $11\;\mu\textrm{m}$ with hexagonal crystal, Without adding seed crystal in Russian gibbstite solution, corundum powders that have weight mean particle diameter of $6\;\mu\textrm{m}$ with hexagonal crystals were also formed after 2 hours operation at the reaction temperature of $420^{\circ}C$.

  • PDF

An analyze of oversea desalination plant order result (해외 해수담수화플랜트 수주현황 분석 및 연구)

  • Sohn, Jinsik;Yang, Jeongseok;Lee, Sunjae;Jang, Jinkoo;Lim, Jaehan;Kim, Dongha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 2008
  • A population growth and industry advances are increasing the demand for water while improving the quality of life. By turning seawater into freshwater it is an alternative for the water shortage problem. The study analyzes the orders and makes suggestions on the outlook of an enterprise that can supply desalination plants both inside and outside the country. It compares the production capacity of enterprises in the desalination industry who deal with the thermal and RO methods. We compare 7 enterprises in the thermal method which includes Doosan Heavy Industries, and the top 10 enterprises in the RO method which includes General Electric Corp. Now that the markets in the Middle East have opened and markets in other regions are gradually growing, demand for water will grow especially in developing countries that are in the process of industrialization. Also, the market share of thermal method desalination has been falling, gradually, because too much energy is spent during the process. On the other hand, the market share of the RO method will rise from 37% in 2005 to 57% in 2015. Recently, the desalination market shows that changing from thermal method to RO method is the trend in the Middle East. Growth and demand in other regions are growing at the same pace as the Middle East. Due to this trend, if the RO system, which is highly effective and uses less energy, were to be continuously developed it would be possible to supply water using sea water and would be a viable alternative water resource.

Bone thickness of the infrazygomatic crest area in skeletal Class III growing patients: A computed tomographic study

  • Lee, Hyub-Soo;Choi, Hang-Moon;Choi, Dong-Soon;Jang, Insan;Cha, Bong-Kuen
    • Imaging Science in Dentistry
    • /
    • v.43 no.4
    • /
    • pp.261-266
    • /
    • 2013
  • Purpose: This study was performed to investigate the bone thickness of the infrazygomatic crest area by computed tomography (CT) for placement of a miniplate as skeletal anchorage for maxillary protraction in skeletal Class III children. Materials and Methods: CT images of skeletal Class III children (7 boys, 9 girls, mean age: 11.4 years) were taken parallel to the Frankfurt horizontal plane. The bone thickness of the infrazygomatic crest area was measured at 35 locations on the right and left sides, perpendicular to the bone surface. Results: The bone was thickest (5.0 mm) in the upper zygomatic bone and thinnest (1.1 mm) in the anterior wall of the maxillary sinus. Generally, there was a tendency for the bone to be thicker at the superior and lateral area of the zygomatic process of the maxilla. There was no clinically significant difference in bone thickness between the right and left sides; however, it was thicker in male than in female subjects. Conclusion: In the infrazygomatic crest area, the superior and lateral area of the zygomatic process of the maxilla had the most appropriate thickness for placement of a miniplate in growing skeletal Class III children with a retruded maxilla.

Fibrin affects short-term in vitro human mesenchymal stromal cell responses to magneto-active fibre networks

  • Spear, Rose L.;Symeonidou, Antonia;Skepper, Jeremy N.;Brooks, Roger A.;Markaki, Athina E.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.143-157
    • /
    • 2015
  • Successful integration of cementless femoral stems using porous surfaces relies on effective periimplant bone healing to secure the bone-implant interface. The initial stages of the healing process involve protein adsorption, fibrin clot formation and cell osteoconduction onto the implant surface. Modelling this process in vitro, the current work considered the effect of fibrin deposition on the responses of human mesenchymal stromal cells cultured on ferritic fibre networks intended for magneto-mechanical actuation of in-growing bone tissue. The underlying hypothesis for the study was that fibrin deposition would support early stromal cell attachment and physiological functions within the optimal regions for strain transmission to the cells in the fibre networks. Highly porous fibre networks composed of 444 ferritic stainless steel were selected due to their ability to support human osteoblasts and mesenchymal stromal cells without inducing untoward inflammatory responses in vitro. Cell attachment, proliferation, metabolic activity, differentiation and penetration into the ferritic fibre networks were examined for one week. For all fibrin-containing samples, cells were observed on and between the metal fibres, supported by the deposited fibrin, while cells on fibrin-free fibre networks (control surface) attached only onto fibre surfaces and junctions. Initial cell attachment, measured by analysis of deoxyribonucleic acid, increased significantly with increasing fibrinogen concentration within the physiological range. Despite higher cell numbers on fibrin-containing samples, similar metabolic activities to control surfaces were observed, which significantly increased for all samples over the duration of the study. It is concluded that fibrin deposition can support the early attachment of viable mesenchymal stromal cells within the inter-fibre spaces of fibre networks intended for magneto-mechanical strain transduction to in-growing cells.

Comparative Study of Effect of Wind and Wave Load on Floating PV: Computational Simulation and Design Method (수상 태양광 발전 부유체에 대한 풍하중과 파랑하중을 통한 전산 해석과 설계적 방법의 비교 연구)

  • Lee, Gyu-Han;Choi, Ji-Woong;Seo, Ji-Hyun;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.9-17
    • /
    • 2019
  • Interest in renewable energy is rapidly growing around the world. One of the most popular renewable energy sources is solar power, and photovoltaic (PV) systems are the most representative route for generating solar energy. However, with the growing adoption of solar power systems, the demand for land on which to install these systems has increased, which has caused environmental degradation. Recently, floating PV systems have been designed to utilize idle water surface areas of dams, rivers, and oceans. Because floating PV systems will be exposed to harsh environmental stresses, the safety of such systems should be secured before installation. In this study, the structural robustness of a floating PV system was analyzed by conducting numerical simulation to investigate whether the system can withstand harsh environmental stresses, such as wind and wave loads. Additionally, conventional wind and wave load predictions based on the design method and the simulation results were compared. The comparison revealed that the design method overestimated wind and wave loads. The total drag of the PV system was significantly overestimated by the conventional design criteria, which would increase the cost of the mooring system. The simulation offers additional advantages in terms of identifying the robustness of the floating PV system because it considers real-world environmental factors.

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Effect of Processing Conditions on the Morphological Structure and Strength Properties of Ultrasonically Laminated Nonwovens (초음파 라미네이트 부직포의 형태구조와 강도특성에 처리조건의 영향)

  • Kang, Jeon-Young;Jeon, Woo-Jin;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.146-149
    • /
    • 2003
  • There are three major bonding types such as chemical bonding, thermal bonding, mechanical bonding to produce nonwoven fabrics. The development of the past few years has shown that the share of thermally bonded webs is growing steadily. The viability of the thermal bonding process is rooted in the price advantage obtained by lower energy costs. However, the thermal bonding process also obtains the quality requirements of the market place. (omitted)

  • PDF