• Title/Summary/Keyword: Group Membership

Search Result 174, Processing Time 0.023 seconds

Method of Service Curation based on User Log Analysis (사용자 이용로그 분석에 기반한 서비스 큐레이션 방법)

  • Hwang, Yun-Young;Kim, Dou Gyun;Kim, Bo-Ram;Park, Seong-Eun;Lee, Myunggyo;Yoon, Jungsun;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.701-709
    • /
    • 2018
  • Our research team implemented and operated the system by analyzing the membership information and identifying the different preferences for each group and providing the results of the recommendation based on accumulated membership information and activity log data to the individual. The utilization log was followed up. We analyzed how many people use recommended services and analyzed whether there are any factors other than the personalization service algorithm that affect the service utilization of the system with personalization. In addition, we propose recommendation methods based on behavioral changes when incentives are given through analyzing patterns of users' usage according to methods of recommending services and contents that are often used based on analysis contents.

Fuzzy AHP and FCM-driven Hybrid Group Decision Support Mechanism (퍼지 AHP와 퍼지인식도 기반의 하이브리드 그룹 의사결정지원 메커니즘)

  • Kim, Jin-Sung;Lee, Kun-Chang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.239-250
    • /
    • 2003
  • In this research, we propose a hybrid group decision support mechanism (H-GDSM) based on Fuzzy AHP (Analytic Hierarchy Process) and FCM (Fuzzy Cognitive Map). The AHP elicits a corresponding priority vector interpreting the preferred information among the decision makers. Corresponding vector was composed of the pairwise comparison values of a set of objects. Since pairwise comparison values are the judgments obtained from an appropriate semantic scale. However, AHP couldn't represent the causal relationship among information, which were used by decision makers. In contrast to AHP, FCM could represent the causal relationship among variables or information. Therefore, FCMs were successfully developed and used in several ill-structured domains, such as strategic decision-making, policy making, and simulations. Nonetheless, many researchers used subjective and voluntary inputs to simulate the FCM. As a result of subjective inputs, it couldn't avoid the rebukes of businessman. To overcome these limitations, we incorporated the Fuzzy membership functions, AHP and FCM into a H-GDSM. In contrast to current AHP methods and FCMs, the H-GDSM method developed herein could concurrently tackle the pairwise comparison involving causal relationships under a group decision-making environment. The strengths and contributions of our mechanism were 1) handling of qualitative knowledge and causal relationships, 2) extraction of objective input value to simulate the FCM, 3) multi-phase group decision support based on H-GDSM. To validate our proposed mechanism we developed a simple prototype system to support negotiation-based decisions in electronic commerce (EC).

  • PDF

Systematic Classification of Container Ports in European Union Countries (유럽지역 컨테이너항만의 체계적 분류에 관한 연구)

  • Yeo, Gi-Tae
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.3
    • /
    • pp.382-391
    • /
    • 2006
  • The aim of this research is to classify the 21 container ports in European Union countries using components of competition and co-operation under the well-known methodology, FCM(Fuzzy C-Mean). Through this approach, those 21 ports were classified into six poet groups, and also membership degree of each port within the six port groups were suggested. As results, Rotterdam which positioned Group C, is turned out the most competitive independent port. The next competitive group is found out as Group B which consisted of port of Hamburg and Antwerp. In another point of view, Group A and B which have six and four ports respectively, were needed to search the co-operation strategies. Finally, the lowest competitive port groups in the targeted area were shown as Group D and F.

  • PDF

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

An Mechanism to Support IP Multicast over ATM Network (ATM망에서의 IP 멀티캐스트 지원 메커니즘)

  • 안광수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.117-125
    • /
    • 2003
  • The proposed mechanism has an group management server, which manages the information about both the receivers and the senders. Any receiver can dynamically join/leave the multicast VC. The signaling overload due to group membership changes is not concentrated on the sender, but it is distributed to many receivers for the scalability improvement. The associated signaling messages propagates from the receivers to the ATM switch dedicated to the multicast VC, and hence no signaling overload exists in the shared links there is no latency for the receiver to wait. Our proposed scheme is superior in the view of scalability, the efficiency and the latency to other schemes.

  • PDF

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.

The formation method of part families considering multiple attributes of parts in flexible manufacturing systems (유연생산시스템에 있어서 부품의 다속성을 고려한 부품군 형성 방법)

  • Kim, Jin-Yong;Hong, Sung-Jo;Choi, Jin-Yeong;Lee, Chin-Gyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.803-816
    • /
    • 1997
  • In this paper we propose a new approach far part families considering multiple attributes of parts in the design and operating stage of flexible manufacturing systems. We first represent the relationship of parts and the relative attributes using fuzzy membership function, AHP method and normalization. As a result, more realistic nonbinary data of the relationship is obtained. Then we group parts into part families based on the nonbinary data using fuzzy $\alpha$-cut and new similarity coefficient method. The performance of our method is compared numerically with others.

  • PDF