• Title/Summary/Keyword: Group Key Agreement Protocol

Search Result 41, Processing Time 0.026 seconds

Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

  • Nam, Jung-Hyun;Kim, Moon-Seong;Paik, Ju-Ryon;Won, Dong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.751-765
    • /
    • 2012
  • Key establishment protocols are fundamental for establishing secure communication channels over public insecure networks. Security must be given the topmost priority in the design of a key establishment protocol. In this work, we provide a security analysis on two recent key establishment protocols: Harn and Lin's group key transfer protocol and Dutta and Barua's group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown key-share attack. For each of the two protocols, we present how to eliminate their security vulnerabilities. We also improve Dutta and Barua's proof of security to make it valid against unknown key share attacks.

Group Key Agreement for Mobile Devices in Different Cells (서로 다른 셀의 모바일 장치간의 그룹키 동의 프로토콜)

  • Kim Jeeyeon;Choi Yeonyi;Kim Seungjoo;Won Dongho
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.651-658
    • /
    • 2005
  • Mobile communication has become more pervasive and it is considered as one of main concerns oi conferencing, multi-user games and etc. in mobile environment. These applications need to secure communication in group. Most of the published protocols are based on model which consists of a stationary base station and a cluster of mobile devices. In this paper, we have focused on the extended model of which participants are several base stations and mobile devices in different cells. We present a new group key protocol among mobile devices in different cells and analyze its security And we also look at how password authentication can be used to our group key agreement protocol. The mobile device's computing load may be reduced by using password authentication.

A Study on a Group Key Agreement using a Hash Function (해쉬 함수를 이용한 그룹키 합의에 관한 연구)

  • Lee, Jun;Kim, In-Taek;Park, Jong-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.627-634
    • /
    • 2010
  • In this paper we suggest a group key agreement protocol among a group consisting more than 3 PKIs. From an 128 bit message, we produce a group key to any length size using a hash function. With a computer experiment we found that PKI's encryption/decryption time is the most dominant part of this procedure and an 160 bit ECC PKI is the most efficient system for distributing an 128 bit message in practical level. We implement this procedure over an unsecure multi user chatting system which is an open software. And we also show that this suggestion could be practically used in military business without a hardware implementation.

A Certificateless-based One-Round Authenticated Group Key Agreement Protocol to Prevent Impersonation Attacks

  • Ren, Huimin;Kim, Suhyun;Seo, Daehee;Lee, Imyeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1687-1707
    • /
    • 2022
  • With the development of multiuser online meetings, more group-oriented technologies and applications for instance collaborative work are becoming increasingly important. Authenticated Group Key Agreement (AGKA) schemes provide a shared group key for users with after their identities are confirmed to guarantee the confidentiality and integrity of group communications. On the basis of the Public Key Cryptography (PKC) system used, AGKA can be classified as Public Key Infrastructure-based, Identity-based, and Certificateless. Because the latter type can solve the certificate management overhead and the key escrow problems of the first two types, Certificateless-AGKA (CL-AGKA) protocols have become a popular area of research. However, most CL-AGKA protocols are vulnerable to Public Key Replacement Attacks (PKRA) due to the lack of public key authentication. In the present work, we present a CL-AGKA scheme that can resist PKRA in order to solve impersonation attacks caused by those attacks. Beyond security, improving scheme efficiency is another direction for AGKA research. To reduce the communication and computation cost, we present a scheme with only one round of information interaction and construct a CL-AGKA scheme replacing the bilinear pairing with elliptic curve cryptography. Therefore, our scheme has good applicability to communication environments with limited bandwidth and computing capabilities.

A Group Key Management Architecture in Mobile Network Environments (이동네트워크 환경에서의 그룹키 관리구조)

  • 박영호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.89-100
    • /
    • 2002
  • In this paper, we propose a group key management architecture for the secure group communications in mobile netwowrks and authenticated key agreement protocol for this system. Most of existing group key management schemes un certificates based on the public key for the purpose of user authentication and key agreement in secure fashion however, we use the ICPK(Implicitly Certified Public key) to reduce the bandwidth for a certificate exchanging and to improve a computational efficiency. In this architecture, we use two-tier approach to deal with key management where the whole group is divided into two parts; the first is a cell groups consisted of mobile hosts and another is a control group consisted of cell group managers. This approach can provide flexibility of key management such that the affection for a membership change is locally restricted to the cell group which is an autonomous area of the CGM(Cell Group Manager).

An Efficient Dynamic Group Key Agreement for Low-Power Mobile Devices (저전력 모바일 장치에 적합한 효율적인 동적 그룹 키 동의)

  • Cho Seokhyang;Nam Junghyun;Kim Seungjoo;Won Dongho;Lee Hyejoo;Choi Jinsoo
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.157-168
    • /
    • 2005
  • Group key agreement protocols are designed to provide a group of parties securely communicating over a public network with a session key. The mobile computing architecture is asymmetric in the sense of computational capabilities of participants. That is, the protocol participants consist of the stationary server(application servers) with sufficient computational Power and a cluster of mobile devices(clients) with limited computational resources. It is desirable to minimize the amount of computation performed by each group member in a group involving low-power mobile devices such as smart cards or personal digital assistants(PDAs). Furthermore we are required to update the group key with low computational costs when the members need to be excluded from the group or multiple new members need to be brought into an existing group. In this paper, we propose a dynamic group key protocol which offers computational efficiency to the clients with low-power mobile devices. We compare the total communicative and computational costs of our protocol with others and prove its suity against a passive adversary in the random oracle model.

Efficient Group Key Agreement Protocol (EGKAP) using Queue Structure (큐 구조를 이용한 효율적인 그룹 동의 방식)

  • Hong, Sung-Hyuck
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.217-222
    • /
    • 2012
  • Group communication on the Internet is exploding in popularity. Video conferencing, Enterprise IM, desktop sharing, and numerous forms of e-commerce are but a few examples of the ways in which the Internet is being used for business. The growing use of group communication has highlighted the need for advances in security. There are several approaches to securing user identities and other information transmitted over the Internet. One of the foundations of secure communication is key management, a building block for encryption, authentication, access control, and authorization.

Secure Group Communications Considering Computational Efficiency of Mobile Devices in Integrated Wired and Wireless Networks (무선 단말기의 계산 효율성을 고려한 유.무선 통합 네트워크 환경에서의 안전한 그룹 통신)

  • Chang Woo-Suk;Kim Hyun-Jue;Nam Jung-Hyun;Cho Seok-Hyang;Won Dong-Ho;Kim Seung-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.60-71
    • /
    • 2006
  • Group key agreement protocols are designed to allow a group of parties communicating over a public network to securely and efficiently establish a common secret key, Over the years, a number of solutions to the group key agreement protocol have been proposed with varying degrees of complexity, and the research relating to group key agreement to securely communicate among a group of members in integrated wired and wireless networks has been recently proceeded. Both features of wired computing machines with the high-performance and those of wireless devices with the low-power are considered to design a group key agreement protocol suited for integrated wired and wireless networks. Especially, it is important to reduce computational costs of mobile devices which have the limited system resources. In this paper, we present an efficient group key agreement scheme which minimizes the computational costs of mobile devices and is well suited for this network environment and prove its security.

Group Key Transfer Protocol Based on Shamir's Secret Sharing (Shamir의 비밀 공유 방식의 그룹 키 전송 프로토콜)

  • Kim, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.555-560
    • /
    • 2014
  • Recently, there are many researches on sharing group session key for members in a group. Among them, Harn and Lin proposed a scheme based on the Shamir's group session key and Liu, Cheng, Cao, and Jiang improved it to reduce the specific weakness. Especially, these schemes are based on the finite integer ring to protest the insider attack, in which a valid member can derived another member's secret using known information. In this paper, it is shown that the finite integer ring implies the failure of the reconstruction of group session key depending on the adopted parameters. We fix this problem and propose new group session key transfer scheme using the Shamir's secret sharing.

Implementation of key establishment protocol using Signcryption for Secure RTP

  • Kim, Hyung-Chan;Kim, Jong-Won;Lee, Dong-Ik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.439-441
    • /
    • 2002
  • Real-time Transport Protocol (RTP) is widely used in VoIP stacks charging the multimedia data delivery. Concerning with payload protection of RTP packets, Secure RTP has been discussed in IETF AVT group to provide confidentiality and authentication features using block ciphering and message authentication coding. However, Secure RTP only concentrates on payload protection. Signcryption is a good candidate for key agreement. This paper proposes a key establishment protocol using Signcryption and shows example implementation of a secure VoIP application based on Secure RTP with the proposed scheme.

  • PDF