
217

큐 구조를 이용한 효율적인 그룹 동의 방식

홍성혁*

Efficient Group Key Agreement Protocol (EGKAP) using Queue

Structure

Sunghyuck Hong
*

요 약 그룹 통신은 인터넷을 통해 급속도로 발전 중이며, 그룹통신으로는 화상회의, 인스턴트 메시지, 데스크 탑
공유, 다양한 e-커머스등과 같은 응용프로그램들이 있다. 안전한 그룹통신을 위해서 그룹 키를 생성하여 통신 메시지
를 암호화하여 교환함으로써 그룹통신의 기밀성을 보장할 수 있다. 본 연구에서는 그룹 키를 보다 안전하면서 효율적
으로 생성하여 안전한 그룹통신에 기여하는데 그 목적이 있다.

주제어 : 키관리, 키동의, 안전한 그룹통신, 네트워크 보안, 안전한 그룹키

Abstract Group communication on the Internet is exploding in popularity. Video conferencing, Enterprise IM,
desktop sharing, and numerous forms of e-commerce are but a few examples of the ways in which the Internet
is being used for business. The growing use of group communication has highlighted the need for advances in
security. There are several approaches to securing user identities and other information transmitted over the
Internet. One of the foundations of secure communication is key management, a building block for encryption,
authentication, access control, and authorization.

Key Words : key management, key agreement, secure group communication, network security, secure group key

*백석대학교 정보통신학부 조교수
논문접수: 2012년 4월 30일, 1차 수정을 거쳐, 심사완료: 2012년 5월 11일

1. Introduction

Key management and member authentication

processes take place at the beginning of group

communication. To establish a secure group, all

members are authenticated, then generate and use a

common group key (GK) to encrypt and decrypt

messages [3]. To achieve a high level of security, the

GK should be changed after any member joins or

leaves so that former group members have no access

to current communications and new members have no

access to previous communications [2]. One problem

inherent in this process is that the computation of GKs

often takes a significant amount of time – even when

a group’s size is relatively small. To address this

problem, a recent focus in key management is the

efficient generation of GKs [1][8][9]. It is this need for

efficient key generation that we address.

I describe a new approach to GK generation, the

Efficient Group Key Agreement Protocol (EGKAP)

with using Queue structure. EGKAP provides a

queue-based divide and conquer algorithm that is more

efficient than the Tree-based Group Diffie-Hellman

(TGDH) protocol that is currently the most efficient

group key generation protocol [9]. I describe the

EGKAP protocol in detail below. Then, to demonstrate

how the EGKAP provides an efficient way to determine

high-performance members without additional

computational overhead, I contrast its’ efficiency with

the TGDH protocol in several experimental tasks. Our

디지털정책연구 제10권 제4호(2012.5)

218

results show that the EGKAP is both feasible and

computationally efficient.

2. Group Key Generation Protocols

The TGDH (Tree-based Group Diffie-Hellman)

protocol is currently the most efficient group key

generation protocol [2]. This protocol reduces the

complexity of generating a GK by using a tree

structure during generation. The TGDH protocol has

two shortcomings, however. One shortcoming is that

TGDH does not generate GKs based on the relative

performance of group members’ systems. Restated, the

TGDH protocol assumes that all members have equal

computing power. In actuality, heterogeneity exists in

distributed computing environments in that some group

members have high-computing-power systems while

other group members have lower-computing-power

systems. Because secure group communication will not

be able to start until every member has a GK, the

assumption of equal computing power means that the

overall performance of the GK-generation process is

limited by the lowest-performance group member.

A second shortcoming is that TGDH uses a tree

structure for group key generation. For maximum

performance, a tree must be well-balanced. Because

group members leave the group key generation tree

randomly, such trees are either unbalanced and fail to

achieve maximum performance or must be continually

re-balanced in a process that generates computational

overhead and slows GK generation [2].

2.1 Group Diffie-Hellman Protocol

The EGKAP queue structure is used to determine

high- and low-performance members, to prioritize the

generation of GKs for high-performance users, and

then to generate GKs in that order. In EGKAP, a Group

Controller Server (GCS) is utilized, requiring all

members to compute their public keys and store them

in a queue structure on the GCS in the order of arrival.

EGKAP, as its name indicates, uses a queue structure

rather than a tree structure. Keys that are computed

and transmitted quickly indicate a high-performance

member; these keys are automatically stored at the

front of the queue. This arrangement is advantageous

because the first element in the queue (from the

highest-performance member) will be the first one

processed, thus avoiding delays in generating a GK.

An additional benefit of the queue structure can be

seen when comparing it with a tree structure. While

queues have a simple linear data structure and can be

changed when group members join or leave with

minimal computational overheard, trees must maintain

a balanced structure to maintain maximum

performance. Thus, the biggest advantages of a queue

structure over a tree structure are that a queue

structure provides a useful way to determine

high-performance members and that it avoids the

additional overhead to maintain balance in a key tree.

The queue structure is a centralized control to

generate a GK by using a GCS. Figure 1 shows a

proposed EGKAP entity model. A GCS can access a

member information database that contains a current

login member list, IDs, Passwords, and a Blind Key

Queue (BKQ). Upon login, the GCS validates the

member’s ID and password by accessing the member

information database. After validating a member’s

identification, all members start to generate a GK by

sending their blind key to the GCS. The GCS collects

all blind keys and stores them in the BKQ in the order

of their arrival. As noted earlier, the highest-performance

member’s key is stored at the front of the queue and the

lowest-performing member’s key is stored at the back of

the queue (with the remaining members’ keys stored

somewhere in between, depending on the performance of

the member’s system and thus, on the time of the key’s

arrival in the BKQ). Performance is measured in terms

of the time it takes a member’s system to respond to the

GCS with their BK.

큐 구조를 이용한 효율적인 그룹 동의 방식

219

[Figure 1] EGKAP Entity Model

Current group communication protocols use a

self-signed certificate for member authentication,

which has a well-known weakness in that members

cannot ensure that the name on the public key is really

a true member’s name [5]. To compensate for this

well-known weakness, our approach uses a GCS as a

complete trusted party. Our threat model takes into

account both passive and active outsiders (i.e.

individuals who are not group members). Passive

outsider attacks involve eavesdropping with the aim of

discovering the GK(s); active outsider attacks involve

injecting, deleting, delaying, and modifying protocol

messages.

As group membership changes, the GCS determines

who will continue to participate in generating a group

key (but the GCS does not participate in generating the

group key). Authorized members generate a GK that is

distributed to all other members using an encrypted

link using RSA. Since the GCS does not generate a key

by itself to be sent to each member, the computational

and communication costs of generating a new group

key will not be incurred whenever membership

changes.

2.2 How EGKAP Works

There are two overhead costs in group key

management protocol: the first is communication cost,

and the second is computation cost. Computation and

communication costs are important because they

impact the scalability of group key management [11].

Communication cost is relatively small and constant

(often using a 3-round protocol [1]). Computation costs,

in contrast, dominate the performance of GK

management [11] because those costs depend directly

on group size and because GK generation requires

logarithmically-many exponentiations. All members’

keys must have a contribution to calculate a GK that

ensures GK secrecy [7]. Therefore, EGKAP focuses on

reducing computation costs.

The EGKAP protocol works in the following way.

The GCS broadcasts a request to all members to

generate a blind key. The GCS receives all blind keys

and stores them into its’ BKQ in the order of their

arrival, with the higher-performance members’ blind

keys stored in the front of the BKQ and the

lower-performance members’ blind keys stored in the

rear of the BKQ. The GCS requests members who are

in the front half of the BKQ to compute their

Diffie-Hellman key exchange with those blind keys and

store them in the next level of the BKQ in order of

arrival. Following the determination of each level, the

GCS collects and stores all computed session keys in

the BKQ. The highest-performance member’s key is

always stored into the first spot in each level, the

second highest performance member’s key is stored

into the second spot, and so on. The BKQ automatically

assigns each pair of keys. For example, the first spot’s

blind key will be computed with the last spot’s blind

key; the second spot’s blind key will be computed with

the second-to-last spot’s blind key, and so on.

The blind keys in the rear half of the BKQ are

regarded as the low-performance members’ keys and

these are not used to compute intermediate keys. After

the low-performance members have provided their

blind keys to the high-performance members, the GCS

only allows the high-performance members who have

blind keys to continue to participate in the computation

of the GK. Thus, only high-performance members are

selected to participate in the GK generation process and

디지털정책연구 제10권 제4호(2012.5)

220

the EGKAP protocol avoids the unnecessary delays

involved in waiting for the completion of other

members’ GKs. Furthermore, EGKAP does not require

the maintenance of a balanced key tree (as in TGDH).

2.3 Membership Operations EGKAP Supports

EGKAP supports the following two operations: join

and leave

Whenever a new member joins a group

communication, the GCS broadcasts a control message

to other members to generate a new blind key and then

store all the blind keys from members in the BKQ in

the order of arrival. The GCS determines

high-performance members who will generate a

session key in the next level of the group key

generation process by checking the location of a blind

key in the BKQ. The high-performance members’

blind keys are always automatically stored in the front

of the BKQ. The major steps are shown in Table 2.

<Table 1> Leave Protocol
Step

1:

When an old member leaves, the GCS broadcasts

a control message to other members to generate a

blind key for group key secrecy.

Step

2:

Every member generates a blind key and sends

it back to the GCS

Step

3:

The GCS

• receives all blind keys and stores them into the

BKQ in order of arrival

• selects a next-level key pair for a GK

generation by matching high-performance

members’ and low-performance members’ blind

keys

• broadcasts only to members who are located at

the front of the BKQ

Step

4:

Approved members compute a key pair and sends

it back to the GCS

Step

5:

The GCS

• repeats Step 3 until the final GK has been

generated

• sends the final GK to all members when it has

been generated

<Table 2> Join Protocol
Step

1:

When a new member joins, the GCS broadcasts

a control message to all members.

Step

2:

Every member generates a blind key and sends

it back to the GCS.

Step

3:

The GCS

• receives all blind keys and stores them into

the BKQ in the order of arrival

• selects a next-level key pair for GK

generation by matching high-performance

members’ and low-performance members’ blind

keys

• broadcasts to only members who are located

at the front of the BKQ

Step

4:

Approved members compute a key pair and send

it back to the GCS

Step

5:

The GCS

• repeats Step 3 until the final GK has been

generated

• sends the final GK to all members when it

has been generated

Leave Protocol - As a member leaves the group, the

group key must be recomputed. When an old member

leaves, the GCS broadcasts a message to other

members to generate a blind key and then receives all

blind keys into the BKQ. Major steps are shown in

Table 1.

2.4 Testing EGKAP against Other Protocols

This section demonstrates how low-performance

group members negatively affect the overall

performance of the GK generation process and how the

EGKAP protocol can address this problem. I show first,

that the performance of group members’ computer

systems can affect the efficiency of group key

generation. Then, we show that EGKAP is more

efficient than alternate approaches, including TGDH

and a recent variation of TGDH, known as the

Enhanced Tree-Based Group Diffie-Hellman protocol

(ETGDH). This performance analyses focus on the

number of rounds, the total number of control

messages, network overheads, and group key

generation costs. The total cost is the sum of all

큐 구조를 이용한 효율적인 그룹 동의 방식

221

participants' costs(elapsed times) incurred by any

participant in a given round or protocols on NS 2 which

is simulator tool.

<Table 3> Average Response Times in Each Group
Key Generation Level (unit: msec)

OS Unix Linux Windows XP MAC OS

CPU Clock 650 MHz 1.3 GHz 2.8 GHz 5.2 G Hz

Level 1 375.3 83.4 39.1 21.4

Level 2 710.5 148.1 73.4 37.9

Level 3 1,0742 215.7 117.1 57.4

Level 4 1,441.9 284.0 145.3 74.3

Level 5 1,797.7 349.9 181.2 93.3

Level 6 2,166.8 418.1 220.3 134.4

Level 7 2,527.5 487.0 262.5 163.7

Average 1,442.0 283.7 148.4 83.2

To investigate the performance of group members’

computer systems, four different machines with

different operating systems (Windows XP, Linux, Unix,

and Macintosh) were selected from a given network.

The Windows XP machine is a Pentium 4 (2.8 GHz, 1

GB of RAM), the Linux (SuSE Linux 9.1) is a Pentium

4 (1.3 GHz, 480 MB of RAM), the Unix (Sun Solaris 9)

is a SUN UltraSPARC (650 MHz, 2 GB RAM), and the

Macintosh is a PowerPC G5 (Dual 2.7 GHz, 4 GB

RAM). Recall that is not necessary for the GCS to

actually detect the system resources in terms of

processing power and RAM. Performance is measured

solely in terms of the time it takes the system to

respond to the GCS with the BK. The experimental

results clearly show that the low-performance

members’ systems are slower at generating GKs than

are the high-performance members’ systems (see

Figure 2 and Table 3). This indicates that GK

generation processes can be improved by taking into

account the performance of group members’ computer

systems. According to SPEC CPU 2000, the

performance of the dual 2.7 GHz CPU is 1.9 times

faster than a single 3.0 GHz CPU. Thus, the computing

power of the dual 2.7 GHz CPU is theoretically equal

to the computing power of a single 5.2G Hz CPU.

To contrast EGKAP with TGDH and ETGDH, we

compare and plot the overall performance of three

protocols. At each level, the EGKAP protocol generates

GKs in a shorter amount of time than either TGDH or

ETGDH (see Figure 3).

[Figure 2] Performance Analysis for Group Key
Generation Process

Note that EGKAP determines high-performance

members at each level to optimize GK generation (and

guard against delays caused by network faults, system

failures, or other issues during the GK generation

process). Test results correspond to the average

response times of generating the GK when a new

member joins a group(including computation and

communication overhead). The experiment consisted of

the same four machines mentioned in the previous

paragraph. Thus, these results indicate that EGKAP

presents a way to generate GKs more efficiently than

a process that does not account for the performance of

group members’ systems.

3. Conclusion

A key is a building block to establish a secure group

communication, and key must be generated efficiently

and securely. Therefore, efficient and secure key

generation protocol should be used for secure group

communication. The EGKAP protocol represents an

디지털정책연구 제10권 제4호(2012.5)

222

improvement in efficiency over existing approaches to

secret key cryptography. This and other advances have

the potential to reduce computational overhead and

continue to bring attention to the issue of efficient,

secure group communication.

[Figure 3] Total Response Times for Generating
a Group Key

Reference

[1] Burmester, M. & Desmedt, Y. (1994), “A secure

and efficient conference key distribution system,”

Advances in Cryptology – EUROCRYPT’94.

[2] C. Wong, M. Gouda, and S. Lam, (2000), Secure

group communications using key graphs, IEEE /

ACM Transactions on Networking, 8(1).

[3] M. Fratto, IN PKI WE TRUST? (2001) - VeriSign

topped a trio of outsourced PKI solutions for our

fictional company. In real life, you have to do your

homework and match your needs with the services'

realities. Network Computing, 69.

[4] Y. Choie, E. Jeong and E. Lee,(2005), Efficient

identity-based authenticated key agreement

protocol from pairings, Applied Mathematics and

Computation,162(1), 179-188.

[5] Y. Kim, A. Perrig, and G. Tsudik. (2001),

Communication-efficient group key agreement, In

17th International Information Security Conference

(IFIP SEC’01).

[6] Y. Kim, A. Perrig, and G. Tsudik, (2004),

Tree-based group key agreement, ACM

Transaction on Information and System Security.

홍 성 혁
Sunghyuck Hong received the Ph.D.

degree from Texas Tech University

in August, 2007 major in Computer

Science. Currently, he works at

Division of Information and

Communication in Baekseok

University as an assistant professor.

Before he joined Baekseok, he worked at International

affairs in Texas Tech University as a senior

programmer/analyst, and his jobs were development of

ASP.NET web applications and maintenance of PC/Server.

He is a member of editorial board in the Journal of Korean

Society for Internet Information(KSII) Transactions on

Internet and Information Systems. His current research

interests include Secure Wireless Sensor Networks, Key

Management, and Networks Security.

․E-Mail:shong@bu.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

