• Title/Summary/Keyword: Group Element Method

Search Result 396, Processing Time 0.028 seconds

Electro-Magnetic Field Computation Using the Natural Element Method (Natural Element Method를 이용한 전자장 해석)

  • Kim, H.K.;Jung, J.K.;Oh, Y.H.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.59-61
    • /
    • 2003
  • The natural element method is a kind of meshless Galerkin method. The shape function is derived from the natural neighbor coordinates interpolation scheme. Natural neighbor shape functions are $C^0$ everywhere, except the nodes where they are $C^0$. The numerical integration is carried out using the Delaunay triangles as the background cells. The method is applied to the test problems and simulation results show that the natural element method can give accurate solutions for the electromagnetic field problems.

  • PDF

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.

Effect of cylinder diameter and boat tail angle on the free vibration characteristics of a typical payload fairing

  • Ramamurti, V.;Rajarajan, S.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.345-353
    • /
    • 2002
  • Three noded plate and shell finite element and 3D beam element in conjunction with Lanczos method are used for studying the effect of boat tail angle on the free vibration characteristics of a typical payload fairing for three different cylinder diameters with height to diameter ratio 1.5. Configurations without boat tail structural member are also studied. One half of the one side fairing structure is considered for the analysis and symmetric boundary conditions are used.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis (생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

Performance evaluation of Superconducting synchronous motor via Finite element method (유한요소법을 이용한 고온초전도 동기모터 특성해석)

  • Baik, S.K.;Kim, S.W.;Sohn, M.H.;Jo, Y.S.;Seo, M.G.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.720-722
    • /
    • 2002
  • Superconducting synchronous motor using HTS(high-temperature superconducting) field windings has a lot of advantages over LTS(Jow-temperature superconducting) synchronous machine. A recently developed 5000[hp] HTS motor represents 1/2 reduction in weight and volume compared to an induction type conventional machine. Furthermore. 40% machine loss is reduced compared to the industry average. Based on a conceptual design, a 100[hp] HTS synchronous motor is modeled by F.E.M(Finite Element Method) and the performance is predicted in this paper

  • PDF

Innovative simulation method of the spherical steel bearing applied to high-speed railway bridges

  • Renkang, Hu;Shangtao, Hu;Xiaoyu, Zhang;Menggang, Yang;Na, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.265-274
    • /
    • 2023
  • The spherical steel bearings (SSBs) has been gradually replaced traditional rubber bearings and extensively applied to high-speed railway (HSR) bridges in China, due to their durability and serviceability. Nevertheless, SSB is generally simplified to the ordinary constraints in the finite element model, which cannot reflect its detailed mechanical characteristics, especially its seismic performance. To provide a more precisely simulation, an innovative and simplified finite element simulation method is proposed and the combined element group is developed in ANSYS. The primary parameters were determined by means of the performance test of SSB. The finite element model of SSB applied to a single-span HSR simply supported girder bridge was established through the proposed method. The seismic performance of the SSB was further investigated. A shake table test was conducted to evaluate the accuracy of the proposed simulation method. It is found that the numerical results could have a good agreement with the experiment, namely, the proposed method is feasible and efficient.