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Abstract - The natural element method is a kind of meshless
Galerkin method. The shape function is derived from the natural
neighbor coordinates interpolation scheme. Natural neighbor
shape functions are C* everywhere, except the nodes where they
are €°. The numerical integration is carried out using the
Delaunay triangles as the background cells. The method is
applied to the test problems and simulation results show that the
natural clement method can give accurate solutions for the
electromagnetic field problems.,

1. Introduction

Recently, many meshless methods have been developed in
solving the electromagnetic field problems [1-5). These methods
do not need mesh generation procedure and only data sets for
node distribution and description of the boundaries are required.
Most of the meshless methods such as the Element-Free Galerkin
(EFG) method {3,4] employ the moving least square (MLS)
approximation to compute the shape function. Because the shape
functions of the EFG methoddo not have the Kronecker delta
function property [6], special treatment for imposing the essential
boundary conditions is required [7]. The natural element method
(NEM) is a kind of meshless method employing the Galerkin
scheme for the solution of partial differential equations. The
difference from other meshless methods is that the trial functions
are constructed using the natural neighbor coordinates. The shape
function of the NEM has the Kronecker delta function property
and the essential boundary conditions can be imposed directly
like the finite element method {8,9].

In this paper, the description of the NEM and the application
of the method to the electromagnetic field computations are
presented. By some numerical experiments, the rate of
convergence and the accuracy of the method are shown.

2. Voronoi Diagram and Delaunay Tessellation

The Voronoi diagram and Delaunay tessellation are widely
used in the ficld of computational geometry in constructing the
geometries. For Euclidean space R2, consider a set of distinct

points P = { p;, Py, ..., Py }. The Voronoi polygon of the
point p, is defined as follows:

To={xeR:d(x,%)<d(x,xn)Vm=n)} ()

where d( xm , X, ) is the distance between xpy and x,.

Each T, is the intersection of finitely many open half-spaces,

each being delimited by the perpendicular bisector. The Voronoi
polygon can be viewed as the locus of all points closer to p,, than

to any other nodes. The Voronoi diagram for a set of nodes
divides the plane into 2 set of regions, one for each node, such
that any point in a particular region is closer to that region's node
than to any other node.

Fig. 1(a) shows the some nodes and the Voronoi cell for node
A and Fig. 1(b) shows the Voronoi diagram for given nodes. The
Delaunay triangulation is then constructed by connecting the
nodes whose Voronoi cells have the common boundaries as
shown in Fig. 1(c). Therefore Delaunay triangulation and
Voronoi diagram are dual structures.

(a) Voronoi cell fornode A (b) Voronoi diagram

(c) Delaunay triangulation

Fig. 1. Voronoi diagram and Delaunay triangulation

3. Natural Neighbor Interpolation

if T, and T, have a common boundary, P, and p,, are
considered as neighbors. The notion of a set of neighboring
nodes is generalized by the definition of natural neighbor nodes.
The natural neighbors of any node are those in the neighboring
Voronoi cells, or equivalently, those to which the node is
connected by the sides of the Delaunay triangle [8,9].
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If the sampling point x in the Delaunay triangulation is given,
the natural neighbors of x are the set of nodes which are
connected to it. The number of natural neighbors is a function of
position x and depends on the local nodal density. Consider an
interpolation scheme for a function u(x) in the form of (2).

u(z) = Z)f’” (2) @

where u; (7=1, 2, ., n) is the function value at neighboring
node I, and ¢ () is the weight associated with each node.

The weight ¢;(®) in the NEM is taken as the natural
neighbor coordinates of the point x in the plane. Fig. 2 shows an
example of the Voronoi cells. In Fig. 2(a), a point x is introduced
into the Voronoi diagram and it is observed that x has four
natural neighbors, namely nodes 14. If a point x is added, then a
new Voronoi cell is placed around x as shown in Fig. 2(b).

The natural neighbor coordinates of x with respect to a natural
neighbor 7 is defined as the ratio of the area of their overlapping
Voronoi cells to the total area of the Voronoi cell for x [8].

$i(x) = Ai(z) /A (=) 3

B
where I=1,2, ., n,and A(x)= 3, A,(z).
J=1

For example, in Fig. 2, the four regions composing the closed
polygon abcd are called the second-order cells and their union
(polygon abcd) is a first-order Voronoi cell. The natural neighbor
coordinates or shape function ¢, (%) for node 1 is given by (4).

$1{2) = Awp/Assea @

From the definition of ¢;(z), the shape function has
following properties:

0o {x)<1, ¢;(xy) =8y, !};l%(fﬂ) =1 )

The Kronecker-delta property of (5) is one of the main
different properties compared with MLS approximation scheme.
In one-dimension, the shape function by the natural neighbor
interpolation is precisely the same as the 1-D linear finite
element shape function [8]. Another important property of
natural neighbor shape functions is they are Ceverywhere,
except the nodes where they are C°.

Fig. 2. Construction of natural neighbor coordinates : (a) Original
Voronoi diagram , (b) 1% and 2™ Voronoi cells for point x

4. Implementation of the NEM

The implementation of the NEM is similar to that of FEM or
other Galerkin procedure-based meshless methods. To construct
the shape function and compute their derivatives, the number of
natural neighbors and their global nodal numbers along with the
number of triangles associated with the natural neighbors as well
as their global triangle numbers should be computed. The simple
means to determine if a node is a natural neighbor of a point x is
to use the following criterion.

lv-xl< R (6

where v is the center of the circumcircle of a triangle and R is its
radius.

If the condition (6) for a triangle whose nodes are n;, 7; and
N is satisfied, then the nodes ny, #; and Nk are the natural

neighbors of the pomnt x.

The system matrix and forcing vector by the NEM are
assembled on a nodal basis. For the numerical integration, the
integration cells are needed. In this paper, the Delaunay triangies
themselves are used as the integration cells. The essential
boundary conditions can be directly enforced like the finite
element procedure because the shape function has Kronecker
deita property and the trial function of NEM is strictly linear
between two nodes that belong to an edge of a Delaunay triangle
on the boundary of the convex hull [8]. Generally the system
matrix from the NEM is symmetric and sparse but not
necessarily banded.

5. Simulation and Results

First example is the 2-D simple test problem to validate the
NEM. The equation to be solved and the exact solution are given
by:

Au = -8%sin(2m) sin(2ny) D
ul(x,y) = sinf2nx) sin(2ny) 8

In performing the numerical integration, the three-point Gauss
quadrature is used for each Delaunay triangle. The numerical
solution of u(x,y) by the NEM is plotted in Fig. 3 when the node
distribution of 21 x 21 grid with regular node-spacing is used. In
this case, the maximum relative error of u compared with the
exact solution for each node is less than 1[%)]. Fig. 4 shows the
relative L2 (€2) error norm with respect to the nodal spacing for
regular grid. The L2 () error norm is defined as follows:

n" —"humm = (fp (i o —ud )"
»

9
where u and w" are the exact and numerical solutions,
respectively.

As shown in the figure, it is found that the convergence rate of
the NEM for this problem is better than that of the FEM.

The NEM is also applied to the analysis of electrostatic field.
The problem definition is shown in Fig. 5(a) and nodal
discretization is shown in Fig. 5(b}. Fig. 6 shows the comparison
of the NEM results with FEM ones. As shown in the figure, the
NEM results show very good agreement with FEM ones.
However, the computational cost of the NEM is somewhat
higher because the NEM requires the more steps for Delaunay
tessellation, searching routine for natural neighbors and so on.
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Fig. 4. Relative error norm (h is nodal spacing).
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Fig. 5. Application of the NEM to the electrostatic problem :
(a) Problem definition , (b) Nodal discretization

b o FEM |
i i
1
P e ]
B0 o
4 S 2 16 Pl

(a) Potential distribution
Fig. 6. Comparison of NEM results with FEM ones along line /1

(b) Electric field intensity

6. Conclusions

In this paper, the description of the NEM and the application
of the method to the electromagnetic field computation are
presented. The shape function of the NEM is derived from the
natural neighbor coordinates and has many common properties in
comparison with the FEM. It is found that the NEM is a
promising numerical method for electromagnetic field
computations and can be employed in many applications such as
shape optimization, 3-D problem, moving boundary problem and
SO on.

LA 2
£ AFE 2147 ZAH) ARG AA
AWE $471470 ATe A7H] 2ol o8 &
SRR

7. References

[1] S.L. Ho, S.Yang, J.M. Machado and H.C. Wong, "Application of a
Meshless Method in Electromagnetics, " IEEE Trans.,Magn.,
Vol.37, No.5, pp.3198-3202, September 2001.

[2]1 S. A. Viana and R.C. Mesquita, "Moving Least Square Reproducing
Kemnel Method for Electromagnetic Field Computation," [EEE
Trans., Magn., Vol. 35, No.3, pp.1372-1375, May 1999.

[3] V. Cingoski, N.Miyamoto, K.Kaneda, H.Yamashita, " Element-Free
Galerkin Method for Electromagnetic Field Computation, "
COMPUMAG, Rio de Janeiro, 209-210, November 1997.

[4] S. L. L. Verardi, J. M. Machado and J.R. Cardoso, "The
Element-Free Galerkin Method Applied to the Study of Fully
Developed Magnetohydrodynamic Duct Flow," IEEE Trans.,
Magn., Vol.38, No.2, pp.941-944, March 2002.

[5] Y. Marechal, "Some Meshless Methods For Electromagnetic Field
Computations," JEEE Trans., Magn., Vol. 34, No.5, pp.3351-3354,
September 1998.

[6] Belytschko, T. Y. Krongauz, D. Organ, M. Fleming and P. Krysl,
"Meshless Methods : An Overview and Recent Developments,”
Computer Methods in Applied Mechanics and Engineering 139,
pp.3-47, 1996.

[7] C. Herault and Y. Marechal, "Boundary And Interface Conditions In
Meshless Methods," IEEE Trans, Magn., Vol. 35, No.3j,
pp.1450-1453, May 1999.

[8] N. Sukumar, b. Moran and T. Belytschko, " The Natural Element
Method in Solid Mechanics,” Int. J. Numer. Meth. Engng.,
43:pp.839-887, 1998.

[9] N. Sukumar, B. Moran, A.Yu Semenov and V.V. Belikov, "Natural
neighbor Galerkin methods," Int. J. Numer. Meth. Engng.,
50:pp.1-27, 2001.

_61_



