• 제목/요약/키워드: Group Combustion

검색결과 166건 처리시간 0.027초

The Effect of Some Additives on the Components of Cigarette Smoke (첨가제가 담배 연기성분에 미치는 영향)

  • Ra Do-Young;J도 Byong-Kwon;Lee Chang-Kook;Cho Si-Hyung;Lee Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • 제27권1호
    • /
    • pp.40-50
    • /
    • 2005
  • The influence of tobacco additives on the composition of the combustion products in mainstream smoke is discussed. The effect of additives on the chemical composition of smoke have been further evaluated in order to discover additives that would alter the chemical composition of smoke. Tobacco was uniformly treated at a 1-5$\%$ level with 8 classes of additives. Group M treated with alkali metal salt and group S, F, O give lower tar, nicotine and CO values than the control. Group AN treated with natural antioxidant gives higher tar and CO values than the control. The increases are most probably due to the high transfer rate of the ingredients to smoke. M3 and P1 reduced above the $50\%$ of TSNA from the smoke. M4 and P1 reduced above the $50\%$ of HCN from the smoke. These results suggest that tobacco additives alter pyrolysis or combustion product distribution and provide fundamental data to lead the development of a RRP(reduced risk product).

OH-and CH-Radical Chemiluminescence Characteristics in the Spray Combustion of Ultransonically Atomized Kerosene (초음파에 의해 무화된 케로신 분무연소에서의 OH 라디칼 및 CH 라디칼 자발광 특성)

  • Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제22권1호
    • /
    • pp.72-79
    • /
    • 2018
  • An experimental study was performed to investigate the chemiluminescence characteristics in the spray combustion of ultransonically atomized kerosene. The radical intensity of the spray flame was measured using an ICCD camera and the amount of fuel consumed was obtained by a precise flow-rate measurement technique during combustion. Fuel consumption increased linearly with the increase in carrier-gas flow rate, and typical group combustion, which is a characteristic of spray combustion, was observed. It was found from the analysis of chemiluminescence that the maximum emission intensities of OH and CH radicals decrease, and they move downstream resulting in the increase in a vivid reaction zone as the spray flow rate increases.

Temperature transients of piston of a Camless S.I Engine using different combustion boundary condition treatments

  • Gill, KanwarJabar Singh;Singh, Khushpreet;Cho, H.M.;Chauhan, Bhupendra Singh
    • Journal of Energy Engineering
    • /
    • 제23권3호
    • /
    • pp.221-230
    • /
    • 2014
  • Simplified finite element model of spark ignition (SI) engine to analyse combustion heat transfer is presented. The model was discredited with 3D thermal elements of global length 5 mm. The fuel type is petrol. Internal nodal temperature of cylinder body is defined as 21000C to represent occurrence of gasoline combustion. Material information and isotropic material properties are taken from published report. The heat transfer analysis is done for the instant of combustion. The model is validated by comparing the computed maximum temperature at the piston surface with the published result. The computed temperature gradient at the crucial parts are plotted and discussed. It has been found that the critical top surface suffered from thermal and the materials used to construct the engine parts strongly influenced the temperature distribution in the engine. The model is capable to analyze heat transfer in the engine reasonably and efficiently.

Studies on the Combustion Characteristics and NO Distribution in the Pulverized Coal Fired Boiler (대용량 미분탄 보일러의 연소특성 및 NO 분포 특성 연구)

  • Park, Ho-Young;Kim, Young-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제30권5호
    • /
    • pp.552-559
    • /
    • 2008
  • Three dimensional numerical analysis were performed to investigate the combustion characteristics in a tangentially fired pulverized coal boiler. The predicted values at the outlet of economizer for the gas temperature, O$_2$, NO, CO were been compared with the measured data. By using the actual operating conditions of the power plant, the distribution of velocity, gas temperature, O$_2$, CO, CO$_2$ and NO as well as the particle tracking in the boiler were investigated. Throughout the present study, the non-uniform distribution of flue gas temperature in front of the final superheater might be resulted from the residual swirl flow in the upper furnace of the boiler. The present analysis on non-uniform distribution of the gas temperature could provide the useful information to prevent the frequent tube failure from happening in the final superheater of the tangentially coal-fired boiler.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • 제25권1호
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • 제33권10호
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC (용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • Journal of Hydrogen and New Energy
    • /
    • 제17권4호
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

Ground Test of Model SCRamjet Engine with Free-Piston Shock Tunnel

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok;Smart, Michael;Suraweera, Milinda
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.452-455
    • /
    • 2008
  • Model Scramjet engine is tested with T4 free-piston shock tunnel at University of Queensland, Australia. Basically, test condition is fixed as Mach 7.6 at 31 km altitude. With this condition, variation effects of fuel equivalence ratio, cavity, cowl setting and angle of attack were investigated. In the results, supersonic combustion was observed with low and middle fuel equivalence ratio. At high equivalence ratio, thermal choking was occurred due to the intensive reaction. Cavity and W-shape cowl showed early ignition and enhanced mixing respectively.

  • PDF

NOx Emission Characteristics Depending on the Variations in Yaw Angle of the Secondary Air Nozzles in a Coal Fired Boiler (연소용 이차공기 수평분사각에 따른 질소산화물(NOx) 배출특성)

  • Kim, Young-Joo;Park, Ho-Young;Lee, Sung-No
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제31권4호
    • /
    • pp.272-277
    • /
    • 2009
  • Three dimensional numerical analysis for the coal fired boiler has been performed to investigate the effect of yaw angle variation of the secondary air nozzles on the combustion characteristics and NOx emission. It was found that the prediction gives a good agreement with plant data. The increase in yaw angle up to $20^{\circ}$ have results in the decrease in NOx emission at furnace exit and recirculation flow intensity, together with the increase of unburned carbon in ash. It also has been recognized the remarkably change in configuration of fire ball with increase in yaw angle. The results from this study would be valuable in the case of the combustion modification of the corner firing coal-fired utility boiler.