DOI QR코드

DOI QR Code

Temperature transients of piston of a Camless S.I Engine using different combustion boundary condition treatments

  • Gill, KanwarJabar Singh (Department of Mechanical Engineering Gulzar Group of Institutes) ;
  • Singh, Khushpreet (Future Tech Design Consultants) ;
  • Cho, H.M. (Department of Automotive and Mechanical Engineering, Kongju National University) ;
  • Chauhan, Bhupendra Singh (Department of Mechanical Engineering, Delhi Technological University)
  • Received : 2014.07.03
  • Accepted : 2014.09.14
  • Published : 2014.09.30

Abstract

Simplified finite element model of spark ignition (SI) engine to analyse combustion heat transfer is presented. The model was discredited with 3D thermal elements of global length 5 mm. The fuel type is petrol. Internal nodal temperature of cylinder body is defined as 21000C to represent occurrence of gasoline combustion. Material information and isotropic material properties are taken from published report. The heat transfer analysis is done for the instant of combustion. The model is validated by comparing the computed maximum temperature at the piston surface with the published result. The computed temperature gradient at the crucial parts are plotted and discussed. It has been found that the critical top surface suffered from thermal and the materials used to construct the engine parts strongly influenced the temperature distribution in the engine. The model is capable to analyze heat transfer in the engine reasonably and efficiently.

Keywords

References

  1. Junker H, Issler W. Pistons for high loaded direct injection diesel engines. MAHLE Technical Information.
  2. Taylo CM. Automobile engine tribology - design considerations for efficiency and durability. Wear 1998;221:1-8. https://doi.org/10.1016/S0043-1648(98)00253-1
  3. Kajiwara H, Fujioka Y, Suzuki T, Negishi H. An analytical approach for prediction of piston temperature distribution in diesel engines. JSAE Rev 2002;23(4):429-34. https://doi.org/10.1016/S0389-4304(02)00234-5
  4. Payri F, Benajes J, Margot X, Gil A. CFD modeling of the in-cylinder flow in direct-injection diesel engines. Comput Fluids 2004;33(8):995-1021. https://doi.org/10.1016/j.compfluid.2003.09.003
  5. Mogilewski R, Brian SR, Wolbach WS, Krucek TW, Maier RD, Shoemaker DL, Chabala JM, Soni KK, Levi-Setti R. Reactions at the matrix-reinforcement interface in aluminum alloy matrix composites. Mater SciEng A 1995;191:209-22. https://doi.org/10.1016/0921-5093(94)09635-A
  6. Huang YD, Hort N, Kainer KU. Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys. Composites A 2004;35(2):249-63. https://doi.org/10.1016/j.compositesa.2003.09.027
  7. Baxter WJ, Alostaz A, Jasiuk I. The effect of shot particles on the fatigue of Kaowoolfibre-reinforced 339 Aluminum. Met Mater Trans A 1999;30:95.
  8. Joyce MR, Styles CM, Reed PAS. Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys.Int J Fatigue 2003; 25: 863-9. https://doi.org/10.1016/S0142-1123(03)00157-9
  9. Friedrich C, Berg G, Broszeit E, Rick F, Holland J. PVD CrxN coatings for tribological application on piston rings. Surf Coat Technol 1997;97(1-3):661-8. https://doi.org/10.1016/S0257-8972(97)00335-6
  10. Pinedo CE. The use of selective plasma nitriding on piston rings for performance improvement. Mater Des 2003;24(2):131-5. https://doi.org/10.1016/S0261-3069(02)00121-8
  11. Kikuchi T, Ito S, Nakayama Y. Piston friction analysis using a direct-injection single-cylinder gasoline engine. JSAE Rev 2003; 24(1): 53-8. https://doi.org/10.1016/S0389-4304(02)00242-4
  12. Stolarski TA, Zhou Q. Temperature-friction characteristics of used lubricant from two-stroke cross-head marine diesel engines.Wear 2002;252(3-4):300-5. https://doi.org/10.1016/S0043-1648(01)00883-3
  13. Priest M, Taylor CM. Automobile engine tribology - approaching the surface. Wear 2000;241(2):193-203. https://doi.org/10.1016/S0043-1648(00)00375-6
  14. Takiguchi M, Ando H, Takimoto T, Uratsuka A. Characteristics of friction and lubrication of two-ring piston. JSAE Rev 1996;17(1):11-6. https://doi.org/10.1016/0389-4304(95)00050-X
  15. Cho JR, Joo YS, Jeong HS. The Al-powder forging process: its finite element analysis. J Mater Processing Technol 2001;111(1-3):204-9. https://doi.org/10.1016/S0924-0136(01)00520-9
  16. VijayaBabu M, Krishna Kumar R, Prabhakar O, Gowri Shankar N. Fracture mechanics approaches to coating strength evaluation. EngFractMech 1996;55(2):235-48.
  17. Nakajima K, Otaka H, Kashimura T, Sakuma S, Tanaka M. Newly developed hollow ring groove insert piston - part 2:producing technology of new piston. JSAE Rev 1996;17(4):448.
  18. Sulaiman S, Hamouda AMS, Gethin DT. Experimental investigation for metal-filling system of pressure diecasting process on a cold chamber machine. J Mater Processing Technol 2001;119(1-3):268-72. https://doi.org/10.1016/S0924-0136(01)00972-4
  19. R. Bhagat, Y. M. Jibhakate , Thermal Analysis And Optimization Of I.C. Engine Piston Using finite Element Method International Journal of Modern Engineering Research (IJMER) Vol.2, Issue.4, July-Aug 2012 pp-2919-2921 ISSN: 2249-6645
  20. PiotrSzurgott, TadeuszNiezgoda THERMOMECHANICAL FE ANALYSIS OF THE ENGINE PISTON MADE OF COMPOSITE MATERIAL WITH LOW HISTERESIS Journal of KONES Powertrain and Transport, Vol. 18, No. 1 2011
  21. Prof. H. V. Shete, Prof. R. A. Pasale, Prof. E. N. EitawadePhotoelastic Stress Analysis & Finite Element Analysis of an Internal Combustion Engine Piston. International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 ISSN 2229-5518
  22. Bhaumik Patel, AshwinBhabhor THERMAL ANALYSIS OF A PISTON OF RECIPROCATING AIR COMPRESSOR International Journal of Advanced Engineering Research and Studies E-ISSN2249-8974
  23. Dr.Ahmed A. Al-Beiruti, Dr.Basim M. Al-Quraishi&IsamEzzulddinyousif , Thermal Effects on Diesel Engine Piston and Piston Compression Rings
  24. S.G. Kandlikar, J. Sergi, J. LaManna, M. Daino, "Hydrogen Horizon", Mechanical Engineering, The Magazine of ASME vol.131, No. 5, pp.32, 2009.
  25. J. B. Heywood, "Internal combustion engine fundamentals", New York: McGraw-Hill, 1988.
  26. C.H. Li, "Piston thermal deformation and friction considerations", SAE Paper 820086, 1982.
  27. R. Prasad and N.K. Samria, "Transient heat transfer analysis in an internal combustion engine piston", Computers & Structures vol. 34, No. 5, pp. 781-193. 1990.
  28. V. Esfahanian, A. Javaheri, M. Ghaffarpour, "Thermal analysis of an SI engine piston using different combustion boundary condition treatments", Applied Thermal Engineering vol. 26, pp. 277-287, 2006. https://doi.org/10.1016/j.applthermaleng.2005.05.002
  29. L. Yong and R.D. Reitz, "Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulation", Int. J. Heat and Mass Transfer vol. 41, pp.859- 869, 1988.
  30. Y. Rasihhan and F.J. Wallace, "Temperature transients on engine combustion chamber walls - I. Finite difference formulation, validation and grid optimization", Int. J. Mech. Sci. vol. 33, No. 10, pp.793-803, 1991. https://doi.org/10.1016/0020-7403(91)90002-K
  31. Y. Rasihhan and F.J. Wallace,"Temperature transients on engine combustion chamber walls - II. Geometry and general material property including temperature-dependent effects", Int. J. Mech. Sci. vol. 33, No. 10, pp.793-803, 1991. https://doi.org/10.1016/0020-7403(91)90002-K
  32. Y. Rasihhan and F.J. Wallace, "Temperature transients on engine combustion chamber walls - III. Application of finite difference model to various metals and ceramic walls", Int. J. Mech. Sci. vol. 33, No. 10, pp. 863-874, 1991. https://doi.org/10.1016/0020-7403(91)90008-Q
  33. S.W. Chyuan, "Finite element simulation of a twin-cam 16-valve cylinder structure", Finite Elements in Analysis and Design vol. 35, pp.199-212, 2000. https://doi.org/10.1016/S0168-874X(00)00002-0
  34. C. -C. Lee, K. -N. Chiang, W.-K. Chen, R.-S. Chen, "Design and analysis of gasket sealing of cylinder head under engine operation conditions", Finite Elements in Analysis and Design vol. 41, pp. 1160-1174, 2005. https://doi.org/10.1016/j.finel.2004.12.007
  35. A. Jafari, S. K.Hannani, "Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines", Int. Communications in Heat and Mass Transfer vol. 33, pp. 122- 134, 2006. https://doi.org/10.1016/j.icheatmasstransfer.2005.08.008
  36. R.W. Serth, "Process Heat Transfer Principles and Applications", Amsterdam: Elsevier, 2007.
  37. A. Mohammadi, M. Yaghoubi, M. Rashidi, "Analysis of local convective heat transfer in a spark ignition engine", Int. Communications in Heat and Mass Transfer, vol. 35, pp. 215-224, 2008. https://doi.org/10.1016/j.icheatmasstransfer.2007.06.008
  38. F. Illan, M. Alarcon, "Numerical analysis of combustion and transient heat transfer processes in a two-stroke SI engine", Applied Thermal Engineering vol. 30, 2469-2475, 2010. https://doi.org/10.1016/j.applthermaleng.2010.06.018
  39. ALGOR V22 User Manual, 2008.
  40. ASM Handbook. "Properties and Selection: Irons, Steels and High Performance Alloy", ASM International vol. 1, 1990.
  41. D. SAMOILENKO, H.M.Cho, "Improvement of Combustion Efficiency and Emission Characteristics of IC Diesel Engine operating on ESC cycle applying Variable Geometry Turbocharger (VGT) with Vaneless Turbine Volute", The Korean Society of Automotive Engineers, vol.14,2013