• Title/Summary/Keyword: Groundwater quality monitoring network

Search Result 29, Processing Time 0.025 seconds

Assessment of Groundwater Quality on a Watershed Scale by Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 이용한 유역단위 지하수 수질등급 평가)

  • Kim, Jeong Jik;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.186-195
    • /
    • 2021
  • In Korea, groundwater quality is monitored through National Groundwater Quality Monitoring Network (NGQMN) administered by Ministry of Environment. For a given contaminant, compliance to groundwater quality standards is assessed on a annual basis by monitoring the number of incidents that concentration exceeds the regulatory limit. However, this approach provides only a fractional information about groundwater quality degradation, and more crucial information such as location and severity of the contamination cannot be obtained. For better groundwater quality management on a watershed, a more spatially informative and intuitive method is required. This study presents two statistical methods to convert point-wise monitoring data into information on groundwater quality status of a watershed by using a proposed grading scale. The proposed grading system is based on readily available reference standards that classify the water quality into 4 grades. The methods were evaluated with NO3-, Cl-, and total coliform data in Geum River basin. The analyses revealed that groundwater in most watersheds of Geum River basin is good for domestic or/and drinking with no treatment. But, there was notable quality degradation in Bunam seawall and So-oak downstream standard watersheds contaminated by NO3- and Cl-, respectively.

Evaluation of Status of Groundwater Quality Monitoring Network of Korea : Implications for Improvement (우리나라 지하수수질측정망 현황 평가 및 개선을 위한 고찰)

  • Park, Joung-Ku;Kim, Rak-Hyeon;Lee, Jin-Yong;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.92-99
    • /
    • 2007
  • As of 2007, there are 2,499 groundwater quality monitoring stations in total in Korea. Among them,478 are operated by the MOCT (Ministry of Construction and Transportation) for the National Groundwater Network Program, 781 wells by the ME (Ministry of Environment) for monitoring of the area where imminent contamination is expected, and 1240 wells by the local governments for monitoring of other areas. Even though, water quality data obtained from those wells are being provided to the public since 1999, the information for the wells has not been appropriately informed. In this study, we assessed the wells that are being used for the national groundwater quality monitoring from the points of operation, location, and well configuration to provide suggestions for the improvement of the national groundwater quality monitoring.

Temporal Trend Analysis of Contamination using Groundwater Quality Monitoring Network Data (지하수 수질측정망 자료를 활용한 시간적 오염도 추이변화 분석)

  • Bang, Sara;Yoo, Keunje;Park, Joonhong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.120-128
    • /
    • 2011
  • Korea Groundwater Quality Monitoring Network is a database of annual groundwater quality survey results to prevent groundwater pollution. We estimated contamination index (CI) values for each type of land use, and analyzed temporal trends of pollutant concentration data in the Groundwater Quality Monitoring Network from 2001 to 2009. Among the pollutants considered in the database, the concentrations of nitrate and chloride were higher than their standards. In the case of nitrate, recreation parks, golf courses and general waste dumping regions showed increasing trends according to linear regression analysis, whereas industrial complexes and residential regions of urgan and recreation parks showed increasing trends in the chloride concentration data. According to multiple variable linear regression analysis, EC, pH and topography were major factors influencing CI values. These results suggest that groundwater with a high CI value and increasing trend is vulnerable for potential contamination, which requires more careful groundwater pollution control.

Analysis on Monitoring Results of Korean Soil Monitoring Network (토양측정망 운영 결과 분석 연구)

  • Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • Usability of soil quality monitoring network for ascertaining soil quality changes was evaluated by analysing soil quality monitoring results. Tolerance limits of soil quality monitoring results from 1997 to 2007 were calculated and compared with Korean soil quality standards. This study determined that soil quality was changed if the upper 95% tolerance limit value was greater than the soil quality standard. Fluoride most frequently exceeded the soil quality standard and nickel, zinc, arsenic, copper, lead and cadmium were followed. Analysis on land use showed that tolerance limits of industrial land use most frequently exceeded the soil quality standards and residential, road and various land uses then frequently exceeded. Tolerance limits of land uses expecting high contaminant loads frequently exceeded the soil quality standards. This fact imply that the soil quality monitoring network generates reasonable data to represent change in Korean soil quality. This study also suggested that representative sampling from well identified points should be done to improve data reliability and accurately ascertain soil quality changes.

Field Applicability of Design Methodologies for Groundwater Quality Monitoring Network

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.47-58
    • /
    • 1999
  • Protection of groundwater resources from contamination has been of increasing concern throughout the past decades. In practice, however, groundwater monitoring is performed based on the experience and intuition of experts or on the convenience. In dealing with groundwater contamination, we need to know what contaminants have the potential to threat the water quality and the distribution and concentration of the plumes. Monitoring of the subsurface environment through remote geophysical techniques or direct sampling from wells can provide such information. Once known, the plume can be properly menaged. Evaluation of existing methodologies for groundwater monitoring network design revealed that one should select an appropriate design method based on the purpose of the network and the avaliability of field information. Integer programming approach, one of the general purpose network design tools, and a cost-to-go function evaluation approach for special purpose network design were tested for field applicability. For the same contaminated aquifer, two approaches resulted in different well locations. The amount of information, however, was about the same.

  • PDF

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches (통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가)

  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

Groundwater Quality Monitoring Network Design Using Integer Programming (정수계획법을 이용한 지하수 수질관측망의 설계)

  • Lee, Sang-Il;Kim, Hak-Min
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.557-564
    • /
    • 1999
  • Monitoring of groundwater Quality is essential for the preservation of groundwater resources. In practice. however, groundwater monitoring network is designed based on the experience and intuition of experts or on the convenience. This study proposes a simulation-optimization approach for the optimal design of monitoring networks. In it, the predicted three-dimensional concentration data are used as the input of an optimization problem. Various design objectives and constraints are considered and the problem is formulatcu as the 0-1 integer programming. The methodology was applied to a sanitary landfill site. The results show that the monitoring network configuration changes as the monitoring goal, operation time and constraints vary. The proposed method turns out to be an efficient tool for the wide range of groundwater Quality monitoring network design problems.oblems.

  • PDF

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

도심지역 지하수관리를 위한 지하수환경 모니터링

  • 이진용;최미정;이명재;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.277-279
    • /
    • 2002
  • In late of the 1980's, dramatic increase in water use caused over-exploitation of groundwater and deterioration of water quality in urban areas. To monitor quantity of groundwater resources and their qualities, local groundwater monitoring networks were established. Groundwater resources in urban areas are affected by various human activities including underground building construction (subway), pumping for water use, and pavements. Detailed analysis of the monitored groundwater data would provide some good implications for optimal and efficient management for groundwater resources in the urban area.

  • PDF