• Title/Summary/Keyword: Groundwater Migration

Search Result 127, Processing Time 0.03 seconds

The Moisture Migration of Compacted Clay Liners in the Landfill on Winter Condition (겨울철 조건하의 폐기물매립지 점토층의 수분이동)

  • 이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.47-52
    • /
    • 1997
  • The experimental investigations considered in this paper are similar in many respects to those of Lee$^1$, with some key differences. First, there is no layering of the soils in a heterogeneous liner. The only soil investigated is the clay component of the cover liner. This ensures that the clay is exposed to freezing and that frost propagation in the clay can be investigated separate from other processes. Second, a closed system approach to the simulation was adopted. According to Jones$^2$, closed-system freezing occurs when there is no source of water available beyond that originally present in the soil voids. Freezing under such conditions results in very thin or non-existent ice lenses. One of tile objectives of the experiments described in this paper was the moisture migration and the changing of moisture contents of the compacted clay liner in landfill. The closed-system was used to limit tile variables in the experimental simulation to make these calculations more direct, although the final results could be applied to an open system also. As a result, the moisture content decreased about 45%-46% after two freeze/thaw cycles.

  • PDF

Water Tightness around Under-ground Oil Storage Cavern (지하유류비축공동(地下油類備蓄空洞)의 수밀성(水密性)에 관한 연구(硏究))

  • Chung, Hyung Sik;Sun, Yong;Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.33-38
    • /
    • 1982
  • A successful operation of underground oil storage cavern depends on water-tightness around cavern by groundwater. If water-tightness is not secured, gas bubbles would leak out and oil would migrate to an adjacent empty cavern. In this research an electrical analogy method was employed to study the influence of shape of cavern on gas leakage and the required natural groundwater level, relative oil level in two neighboring caverns and cavern spacing to prevent oil migration. The results show that gas leakage is prevented from a cavern with a ceiling of large curvature. The required values of factors to curtail the migration of oil are given on a graph.

  • PDF

Geochemical Investigation of Fluoride Migration in the Soil Affected by an Accidental Hydrofluoric Acid Leakage (불산 누출사고 지역 토양수의 지구화학적 특성을 통한 불소 거동 및 확산 잠재성 연구)

  • Kwon, Eunhye;Lee, Hyun A;Kim, Doyoung;Lee, Junseok;Lee, Sanghoon;Yoon, Hye-On
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • The hydrofluoric acid (HF) leakage accident occurred on September 2012 in Gumi, Korea affected the surrounding soils and plants. In this study, we investigated fluoride migration in Gumi area through geochemical properties of soil-liquid phase (pore water F and water-soluble F). The concentrations of porewater F and water-soluble F were obtained from N.D (Not detected) to 9.79 mg/L and from 0.001 to 21.4 mg/L, respectively. F in pore water seemed to be affected by artificial and natural origin, and PHREEQC results implied that fluorite is F control factor. F concentrations of soil and soil-liquid phase did not exceed concern level of regulatory criteria and showed similar trends compared by previous studies. Therefore, F contents remained in the soil and soil-liquid phase were considered to be not affected by HF leakage accident.

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang;Chen, Weizhong;Li, Fanfan;Yu, Hongdan;Ma, Yongshang;Tian, Yun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.295-302
    • /
    • 2021
  • Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2 (이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향)

  • Han, Ahreum;Kim, Taehee;Kwon, Yikyun;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

Seasonal Variation of Cr(VI)-contaminated Groundwater Quality and the Potential for Natural Attenuation (6가 크롬 오염 지하수 수질의 계절변화와 자연저감 가능성)

  • Chon, Chul-Min;Ahn, Joo-Sung;Roh, Yul;Rhee, Sung-Keun;Seo, Hyun-Hee;Kim, Gue-Young;Koh, Dong-Chan;Son, Young-Chul;Kim, Ji-Wook
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.645-655
    • /
    • 2008
  • The Cr(VI) concentrations at the shallow aquifer well (MPH-0-1) of the Moonpyung groundwater monitoring station were in the range of 0.5 to 3.1 mg/L exceeding 10 to 62 times the guideline for drinking-water quality, indicating continuous contamination. However, Cr was not detected at the deep bedrock well and the other subsidiary monitoring wells except for MPH-1 and 6. Cross-correlation analyses were conducted for rainfall and groundwater level time series, resulting in the mean time of recharge after precipitation events to be 5.6 days. For rainy season, the water level was raised and the Cr(VI) concentration was several times lower than that during dry season at well MPH-0-1 well. Correlation of the Cr(VI) concentration with the groundwater-level showed that the Cr(VI) reduction was closely related with the groundwater-level rise in the well. However, the groundwater level rise during high water season induced the lateral migration of the Cr(VI)-contaminated groundwater at well MPH-4. We enriched and isolated a chromium reducing bacteria, Enterobacter aerogenes, from the Cr(VI)-contaminated groundwater in the wells MPH-0-1 and MPH-1. The bacteria may play an important role for immobilizing Cr(VI) in the Cr(VI)-contaminated groundwater. Therefore, the migration of the contaminant (Cr(VI) must has been restricted because of the natural attenuation by microbial reduction of Cr(VI) in the groundwater. This research suggests that the bioremediation of the Cr(VI)-contaminated groundwater by the indigenous bacteria may be feasible in the Cr(VI) contaminated groundwater.

Modeling the Groundwater Flow in the Near-field of the Near-surface Disposal System (표층처분시스템 근계영역의 지하수 유동에 대한 모델링 연구)

  • Kim, Jung-Woo;Bang, Je Heon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A numerical model was developed using COMSOL Multiphysics to evaluate groundwater flow that causes radionuclide migration in the unsaturated zone of a near-surface disposal facility, which is considered as a domestic low and an intermediate-level radioactive waste disposal facility. Each scenario was modeled by constructing a two-dimensional domain that included the disposal vault, backfill, disposal cover, and unsaturated aquifer. A comparison of the continuous and intermittent rainfall conditions exhibited no significant difference in any of the factors considered except the wave pattern of water saturation. The input data, such as porosity and residual water content of the unsaturated aquifer, were observed to not have a significant effect on the groundwater flow. However, the hydraulic conductivity of the unsaturated aquifer was found to have a significant effect on the groundwater flow. Therefore, it is necessary to assess the hydraulic conductivity of an unsaturated aquifer to determine the extent of groundwater infiltration into the disposal vault.

Remediation of Contaminated Soil and Groundwater in Korea: Suggestions for Progress (국내 토양과 지하수 오염 복원사업에 대한 고찰)

  • Lee S. Y.;Lee Chae-Young;Kim Doo-Il
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.23-33
    • /
    • 2001
  • Soil and groundwater contamination is an emerging national issue in recognition of the potential adverse impact to human health and ecosystem. In a recent registration, property owner's liability was addressed on the damages to neighbor's soil and groundwater caused by contaminant-plume migration. Soil and groundwater remediation is a technical and engineering project. But, the scientific and technical solutions for the project have been greatly influenced by social and political movement in the country. Governmental sectors, including local and central, should actively engage on this important issue through long-term planning and public investments. Government made regulations to prevent soil and groundwater contamination, not to punish private sector that has no technical and financial capability for solving such problems.

  • PDF

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.