Seasonal Variation of Cr(VI)-contaminated Groundwater Quality and the Potential for Natural Attenuation

6가 크롬 오염 지하수 수질의 계절변화와 자연저감 가능성

  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Joo-Sung (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Roh, Yul (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Rhee, Sung-Keun (School of Life Sciences, Chungbuk National University) ;
  • Seo, Hyun-Hee (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Kim, Gue-Young (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Dong-Chan (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Son, Young-Chul (Korea Water Resources Corporation) ;
  • Kim, Ji-Wook (Korea Water Resources Corporation)
  • 전철민 (한국지질자원연구원 지구환경연구본부) ;
  • 안주성 (한국지질자원연구원 지구환경연구본부) ;
  • 노열 (전남대학교 자연과학대학 지구환경과학부) ;
  • 이성근 (충북대학교 자연과학대학 생명과학부) ;
  • 서현희 (전남대학교 자연과학대학 지구환경과학부) ;
  • 김구영 (한국지질자원연구원 지구환경연구본부) ;
  • 고동찬 (한국지질자원연구원 지구환경연구본부) ;
  • 손영철 (한국수자원공사) ;
  • 김지욱 (한국수자원공사)
  • Published : 2008.12.28

Abstract

The Cr(VI) concentrations at the shallow aquifer well (MPH-0-1) of the Moonpyung groundwater monitoring station were in the range of 0.5 to 3.1 mg/L exceeding 10 to 62 times the guideline for drinking-water quality, indicating continuous contamination. However, Cr was not detected at the deep bedrock well and the other subsidiary monitoring wells except for MPH-1 and 6. Cross-correlation analyses were conducted for rainfall and groundwater level time series, resulting in the mean time of recharge after precipitation events to be 5.6 days. For rainy season, the water level was raised and the Cr(VI) concentration was several times lower than that during dry season at well MPH-0-1 well. Correlation of the Cr(VI) concentration with the groundwater-level showed that the Cr(VI) reduction was closely related with the groundwater-level rise in the well. However, the groundwater level rise during high water season induced the lateral migration of the Cr(VI)-contaminated groundwater at well MPH-4. We enriched and isolated a chromium reducing bacteria, Enterobacter aerogenes, from the Cr(VI)-contaminated groundwater in the wells MPH-0-1 and MPH-1. The bacteria may play an important role for immobilizing Cr(VI) in the Cr(VI)-contaminated groundwater. Therefore, the migration of the contaminant (Cr(VI) must has been restricted because of the natural attenuation by microbial reduction of Cr(VI) in the groundwater. This research suggests that the bioremediation of the Cr(VI)-contaminated groundwater by the indigenous bacteria may be feasible in the Cr(VI) contaminated groundwater.

국가 지하수 관측망인 대전(문평)관측소 및 주변 보조관측정 지하수 수질을 6개월간 관측한 결과, 관측소 충적관정(MPH-0-1)에서 6가 크롬이 0.5-3.1 mg/L의 범위로 검출되어 수질기준의 10-62배를 초과하는 오염이 지속되고 있었다. 또한 하천 방향에 위치한 두 관정(MPH-1과 MPH-6)에서 6가 크롬이 0.1 mg/L 이하로 검출되어 미세한 오염 확산의 징후가 나타났다. 동일기간 지하수 수위 및 강우 관측자료의 시계열분석 결과 6개 관측정에서의 지하수위는 강우에 대하여 평균 5.65일 후에 최대값을 보였다. 시기별 강우/수위 변화와 6가 크롬 농도의 변화를 통하여 강우 반응에 의한 수위상승이 관측소 충적관정의 6가 크롬 농도 감소와 밀접한 관련이 있는 것으로 파악되었다. 이와 더불어 지하수 내 미생물의 종류 및 다양성을 분석하였으며, 6가 크롬으로 오염된 대전문평지역 지하수(MPH-0-1과 MPH-1 관정)에서 크롬환원 미생물인 Enterobacter aerogenes을 분리 배양하였다. 따라서 유기물, 광물 등의 토양 및 대수층 매질에 의한 6가 크롬 저감뿐만 아니라 이 토착미생물에 의한 크롬 오염 지하수의 자연저감이 실제 진행되고 있음을 확인할 수 있었다. 향후 이 미생물의 활성에 대한 심도 있는 연구를 통하여, 크롬오염 지하수의 저감 및 정화 기술의 개발과 적용에 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. 건설교통부, 수자원공사, 한국지질자원연구원 (2005) 지하수 장해우려지역 대책방안연구보고서
  2. 건설교통부, 수자원공사, 한국지질자원연구원 (2006) '6 지하수 장해우려지역 조사 및 대책방안연구보고서
  3. 전철민, 문상호, 안주성, 김영식, 원종호, 안경환 (2007) 대전산업단지 지하수의 6가 크롬오염 및 확산 평가. 자원환경지질. 40(4), 403-418
  4. Anderson, L.D., Kent, D.B. and Davis, J.A. (1994) Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and gravel aquifer. Eviron. Sci. Technol., v. 28, p., 175-185
  5. Bolan, N.S., Adriano, D.C., Natesa, R. and Koo, B.J. (2003) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual., v. 32, p. 120-128 https://doi.org/10.2134/jeq2003.0120
  6. Buerge, I.J. and Hug, S.J. (1999) Influence of mineral surfaces on chromium(VI) reduction by iron(ii). Environ. Sci. Technol., v. 33, p. 4285-4291 https://doi.org/10.1021/es981297s
  7. Camargo, F.A.O., Bento, F.M., Okeke, B.C. and Frankenberger, W.T. (2003) Chromate reduction by chromium- resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. v. 32, p. 1228-1233 https://doi.org/10.2134/jeq2003.1228
  8. Campos, V., Morais, L.C. and Buchler, P.M. (2007) Removal of chromate from aqueous solution using treated natural zeolite. Environ. Geol., v. 52, p. 1521-1525 https://doi.org/10.1007/s00254-006-0596-3
  9. Chon, C.-M., Kim, J.G. and Moon, H.-S. (2006) Kinetics of chromate reduction by pyrite and biotite under acidic conditions. Applied Geochemistry, v. 21, p. 1469-1481 https://doi.org/10.1016/j.apgeochem.2006.06.012
  10. Chon, C.-M., Kim, J.G. and Moon, H.-S. (2007) Evaluating the transport and removal of chromate using pyrite and biotite column. Hydrological Processes, v. 21, p. 1957-1967 https://doi.org/10.1002/hyp.6408
  11. Daulton, T.L., Little, B.J., Jones-Meehan, J., Blom, D.A. and Allard, L.F. (2007) Microbial reduction of chromium from the hexavalent to the divalent state. Geochim. Cosmochim. Acta, v. 71, p. 556-565 https://doi.org/10.1016/j.gca.2006.10.007
  12. Eary, L.E. and Rai, D. (1991) Chromate reduction by subsurface soils under acidic conditions. Soil Sci. Soc. Am. J., v. 55, p. 676-683 https://doi.org/10.2136/sssaj1991.03615995005500030007x
  13. Friedly, J.C., Davis, J.A. and Kent, D.B. (1995) Modeling hexavalent chromium reduction in ground water in field-scale transport and laboratory batch experiments. Water Resources Research, v. 31, p. 2783-2794 https://doi.org/10.1029/95WR02104
  14. Galan, B., Castaneda, D. and Ortiz, I. (2008) Integration of ion exchange and non-dispersive solvent extraction processes for the separation and concentration of Cr(VI) from ground waters. J. Hazardous Materials, v. 152, p. 795-804 https://doi.org/10.1016/j.jhazmat.2007.07.084
  15. Guha, S. and Bhargava, P. (2005) Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environ. Res. v. 77, p. 411-416 https://doi.org/10.2175/106143005X51996
  16. Hellerich, L.A. and Nikolaidis, N.P. (2005) Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to subwetland groundwater environment. Water Research, v. 39, p. 2851-2868 https://doi.org/10.1016/j.watres.2005.05.003
  17. Hellerich, L.A., Nikolaidis, N.P. and Dobbs, G.M. (2008) Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water. J. Environmental Management, v. 88, 1513-1524 https://doi.org/10.1016/j.jenvman.2007.07.032
  18. Henderson, T. (1994) Geochemical reduction of hexavalent chromium in the Trinity Sand Aquifer. Ground Water. v. 32, p. 477-486 https://doi.org/10.1111/j.1745-6584.1994.tb00665.x
  19. Iyer, A., Mody, K., Jha, B., (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar. Pollut. Bull., v. 49, p. 974-977 https://doi.org/10.1016/j.marpolbul.2004.06.023
  20. James, B.R. (2001) Remediation-by-reduction strategies for chromatecontaminated soils. Environmental Geochemistry and Health, v. 23, p. 175-179 https://doi.org/10.1023/A:1012477901521
  21. Jardine, P.M., Fendorf, S.E., Mayes, M.A., Larsen, I.L., Brooks, S.C., Bailey, W.B. (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science and Technology, v. 33, p. 2939-2944 https://doi.org/10.1021/es981211v
  22. Kozuh, N., Stupar, J. and Gorenc, B. (2000) Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol., v. 34, p. 112-119 https://doi.org/10.1021/es981162m
  23. Legrand, L., El Figuigui, A., Mercier, F., Chausse, A. (2004) Reduction of aqueous chromate by Fe(II)/ Fe(III) carbonate green rust: kinetic and mechanistic studies. Environ. Sci. Technol., v. 38, p. 4587-4595 https://doi.org/10.1021/es035447x
  24. Li, Z. (2004) Influence of solution pH and ionic strength on chromate uptake by surfactant-modified zeolite, J. Environ. Eng., v. 130, p. 205-208 https://doi.org/10.1061/(ASCE)0733-9372(2004)130:2(205)
  25. Masscheleyn, P.H., Pardue, J.H., DeLaune, R.D., Patrick, W.H. (1992) Chromium redox chemistry in a lower Mississippi valley bottomland hardwood wetland. Environ. Sci. Technology, v. 26, p. 1217-1226 https://doi.org/10.1021/es50002a611
  26. Mattuck, R., Nikolaidis, N.P. (1996) Chromium mobility in freshwater wetlands. J. Contaminant Hydrology, v. 23, p. 213-232 https://doi.org/10.1016/0169-7722(95)00097-6
  27. Nikolaidis, N.P., Robbins, G.A., Scherer, M., McAninch, B., Binkhorst, G., Asikainen, J.M., Suib, S. (1994) Vertical distribution and partitioning of chromium contamination in a glacio-fluvial aquifer. Ground Water Monitoring and Remediation, v. 14, p. 150-159 https://doi.org/10.1111/j.1745-6592.1994.tb00476.x
  28. Palmer, C.D., Puls, R.W. (1994) Natural attenuation of hexavalent chromium in ground water and soils. U.S. Environmental Protection Agency Ground Water Issue, EPA/540/S-94/505
  29. Palmer, C.D., Wittbrodt, P.R., 1991. Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives. NIH Publication, v. 92, p. 25-40
  30. Pettine, M., D'ttone, L., Campanella, L., Millero, F.J., Passino, R. (1998) The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim. Cosmochim. Acta, v. 62, p. 1509-1519 https://doi.org/10.1016/S0016-7037(98)00086-6
  31. Pratt, A.R., Blowes, D.W., Ptacek, C.J. (1997) Products of chromate reduction on proposed subsurface remediation material. Environ. Sci. Technol., v. 31, p. 2492-2498 https://doi.org/10.1021/es9607897
  32. Schlautman, M.A., Han, I. (2001) Effects of ph and dissolved oxygen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems.Water Res., v. 35, p. 1534-1546 https://doi.org/10.1016/S0043-1354(00)00408-5
  33. Seaman, J.C., Bertsch, P.M., Schwallie, L. (1999) In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environ. Sci. Technol., v. 33, p. 938-944 https://doi.org/10.1021/es980546+
  34. Sharma, D.C. and Forster, C.F. (1993) Removal of hexavalent chromium using sphagnum peat moss. Water Res., v. 27, p. 1201-1208 https://doi.org/10.1016/0043-1354(93)90012-7
  35. Singh, I.B. and Singh, D.R. (2003) Effects of pH on Cr.Fe interaction during Cr(VI) removal by metallic iron. Environ. Technol., v. 24, p. 1041-1047 https://doi.org/10.1080/09593330309385643
  36. U.S. Environmental Protection Agency (1993) EPA updates CERCLA priority list of hazardous substances. The hazardous waste consultant, 10(5), McCoy and Assciates, Inc., Lakewood, Colo., p.2.26-2.30
  37. US Department of Health and Human Services (2000) Toxicological profile for chromium. ATSDR, Georgia
  38. US Environmental Protection Authority (1985) Ambient Water Quality Criteria for Chromium. Washington, D.C.
  39. Xu, Y. and Zhao, D. (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, v. 41, p. 2101-2108 https://doi.org/10.1016/j.watres.2007.02.037
  40. Zakaria, Z.A., Zakaria, Z., Surif, S., Ahmad, W.A., (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J. Haz. Mat., v. 146, p. 30-38 https://doi.org/10.1016/j.jhazmat.2006.11.052