• Title/Summary/Keyword: Grounding test

Search Result 140, Processing Time 0.031 seconds

Research on Assessment of Potential Interference between Individual Grounding Electrodes Using an Electrolytic Tank Modeling Method

  • Gil, Hyoung-Jun;Kim, Dong-Ook;Choi, Chung-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.27-33
    • /
    • 2008
  • This paper deals with the assessment of potential interference between individual grounding electrodes using an Electrolytic Tank Modeling method. When a test current was passed through a grounding electrode, potential rise was measured and analyzed using an electrolytic tank in real time. In order to analyze the potential interference between grounding electrodes, a reduced scale modeling method was studied. Potential interference between isolated grounding electrodes was evaluated as a function of the separation distance between grounding electrodes and the configuration of grounding electrode to be induced. It was found that the separation distance between grounding electrodes was a major factor in reducing the potential interference.

Analysis of Deterioration Characteristics for Connection Factor used in Grounding System (접지시스템에 사용되는 접속요소의 열화특성 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.9-13
    • /
    • 2015
  • This paper describes the analysis of deterioration characteristics for connection factor used in grounding system. The connection method of grounding system is specified in IEC standard. In order to analyze the deterioration characteristics for connection factor, deterioration test was carried out when the connection factor was buried in salt water and underground. The test connection factors were C-type sleeve, clamp, and exothermic welding. As a consequence, most of the connection factor was corroded, and the electrical resistance decreased after deterioration. The analytical results can be used to establish the safety of grounding system.

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.

Analysis on the Method of Forward-Reverse Fault localization of Electric Railways for the Improvement of Accuracy (전기철도 정역방향 고장점표정 방법을 통한 정확도 향상을 위한 연구)

  • Kim, Myeong Su;Kim, Seong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1735-1742
    • /
    • 2018
  • The number of electric railway failures will increase due to the external and internal effects of electric railroads. The grounding test with 25,000V is to artificially test the transmission voltage to ground, and it is possible to cause risks of electric shock and other equipment insulation damage in neighboring enclosure. In 2016, method of fault localization changed to low - voltage at 380V from artificially high- voltage in the grounding tests since opening of Seoul Metropolitan Express Railway; The method is more accurate and safer rather than the previous one because it gets more data from unlimited grounding tests. However, an electric current falls on the track section where the track branches and vehicle bases with many lines. To precisely detect a transitive phenomenon, it is necessary to continuously study and additionally install.

Measurement of Impedance of the Grounding Grid using Variable Frequency Inverter (가변주파수 인버터를 이용한 접지임피던스 측정)

  • 이복희;엄주홍;김교운
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.303-306
    • /
    • 2002
  • This paper presents a novel method for measuring the ground impedance in grounding systems. A square wave current was injected to the main grounding grid through auxiliary electrode, and the test current and ground potential rise(GPR) were measured using the band-pass filter. Ground impedance was calculated from the sinusoidal waveforms of the test current and GPR in frequency range of 20~2100Hz. Also the resistance and reactance component of ground impedance were analyzed.

  • PDF

Frequency Dependence of Impedance of the Grounding Grid (접지그리드의 접지임피던스의 주파수 의존성)

  • 이복희;이동문;엄주홍;김교운
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.22-28
    • /
    • 2003
  • This paper describes the frequency dependence of the grounding impedance. In order to propose the evaluation method of the transient response of powered grounding systems, the grounding impedances were measured with varying the frequency of incoming currents by way of the variable frequency inverter and band pass filter. The magnitude and phase of the grounding impedance were analyzed in the frequency range of 20 [Hz]∼2.1[kHz]. The grounding impedance were increased with increasing the frequency of the test current. The grounding impedance at the frequency of 2[kHz] in the actual 22.9[kV] substation grounding system was approximately 3 times as large as the 60[Hz] grounding impedance. It was found that the frequency dependence of the grounding impedance is mainly subject to the inductive reactance of the grounding conductors. As a result, it is critical to determine the shape and size of grounding grid reducing the resultant inductance in grounding systems for lightning surge protection.

The example of the Carbon Grounding Modules installation for PSD systems at a subway station, Seoulmetro (서울메트로 PSD장비 탄소접지모듈 설치 사례)

  • Chung, Young-Ki;Hyeon, Yong-Seop;Song, Byeong-Gwon;Kim, Yong-Hyeop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.292-298
    • /
    • 2008
  • Seoul Metro and Seoul Metropolitan Rapid Transit Corp. have started installing screen doors at subway platforms to improve the environment of subways and prevent passengers' accidents since 2006. They are still installing screen doors at subway platforms and Metropolitan Rapid Transit Corporations in other areas are also proceeding with installment of screen doors or making preparations for it. Grounding is necessary for installing PSD systems. In case that PSD grounding is connected with existing electrical equipment grounding system, it was decided to install separate grounding for safe operation of PSD system and passenger safety. However, it's very difficult to install new grounding at the subway station compound. A way to improve this condition is that we proceed with grounding by composing grounding station by carbon grounding rod. This paper will mainly deal with how to design and construct carbon ground rod, which has been applied to PSD system grounding since 2006, including its experimental examples. In this paper, ways to secure ground resistance below 5 ohms, which is resistance necessary for PSD grounding, and to compose grounding system were also discussed. Furthermore, a ground test to check the ability to fulfill a role of PSD grounding system was conducted. As a result of applying carbon grounding module, PSD system is being operated without any problem and the installment of PSD system will be continuously expanded in the future. It's also thought that a way to integrate grounding of each functional room which has been installed at the subway station compound and to arrange equipotential grounding should be reviewed and performed promptly.

  • PDF

Modeling and Implementation of Safety Test Device for Grounding System Based on IEC 60364 (IEC 60364의 접지방식에 기반한 안전성 평가 시험장치의 모델링 및 구현에 관한 연구)

  • Kim, Soon-Sik;Han, Byeong-Gill;Lee, Hu-Dong;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.599-609
    • /
    • 2021
  • A novel grounding system, which is presented in IEC 60364, has been adopted since 2021. A safety evaluation for the human body on the grounding system is required due to the various characteristics of the touch voltage and current passing when the human body experiences an electric shock. The Korea Electrical Safety Corporation (KESCO) and Korea Electric Association (KEA) have been conducting a safety technical education on the grounding system. On the other hand, it is difficult to instruct the electrical safety manager because of a lack of safety evaluations for the test equipment on the grounding system. Therefore, this paper modeled and implemented a test device for a safety evaluation depending on the grounding system of IEC 60364. Namely, this paper presents the modeling of the test device for a safety evaluation using PSCAD/EMTDC S/W, which is composed of an AC grid section, s test device section on the grounding system, and a sub-device section. This paper implemented a test device for safety evaluation, which consisted of an AC grid section, TT grounding system section, TN-S grounding system section, and monitoring section. From the simulation and test results with the safety characteristics of the human body in the TT and TN-S grounding system, when the fault impedances are 0[Ω], 10[Ω], and 100[Ω], the currents passing through the human body in the TT grounding system are 104[mA], 87.4[mA], and 35.5[mA], respectively. The corresponding currents in the TN-S grounding system are 54.9[mA], 4.1[mA], and 0.4[mA], respectively. Based on the results, the protection performance for an electric shock to the human body in the TN-S system is better than the TT system. This can be improved when the existing grounding system is changed from the TT system to the TN-S system.

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.

Examinations on the Reasonable Measuring Methods of the Soil Resistivity for Design of Grounding System (접지시스템의 설계를 위한 대지저항률의 합리적인 측정방법 고찰)

  • Lee, Bok-Hee;Kim, Ki-Bok;Lee, Seung-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • In order to design effectively the grounding system, it is very important to determine the optimum soil resistivity at the desired location of the connection to earth. This paper deals with the reasonable methods of measuring the soil resistivity where grounding electrodes are buried. The soil resistivity at three test sites with different resistivity of soil were measured as functions of the spacing between the test probes in the Wenner's four-point method and the length of test ground rod in the three-point method. In the case of the three-point method, the length of test ground rod of 2-10[m] in length was appropriate in two-layered soil structure. In the length range of 2-10[m], the results measured by the three-point method using the test ground rod with the length corresponding to the spacing between the test probes of the Wenner's four-point method are in good agreement with the data obtained from the Wenner's four-point method.