• Title/Summary/Keyword: Grounding cable

Search Result 77, Processing Time 0.024 seconds

FDTD Analsysis of Lightning-Induced Voltages on Shielded Telecommunication Cable with Multipoint Grounding

  • Ju, Jae-Cheol;Lee, Hyun-Young;Park, Dong-Chul;Chung, Nak-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • In this paper, the lightning-induced voltages on shielded twisted-pair wires with multipoint grounding on cable sheath are calculated by using finite-difference time domain (FDTD) method. The equivalent single-wire line that represents a bundle of twisted-pair wires is adopted for computational efficiency. A finitely conducting ground is also taken into account in both lightning electromagnetic field calculations and surge propagation along the shielded cable for a practical simulation. It is found that multipoint additional grounding on cable sheath provides more shielding effectiveness especially in the early time response of the lightning-induced voltages. From this study, the requirements for lighting surge protection devices in a telecommunication subscriber cab1e can be established.

  • PDF

Analysis on Lightning Overvoltage According to Lead Length of Surge Arrester for Underground Cable Outdoor Termination Protection at C/H Tower (C/H 철탑 종단접속함 보호용 피뢰기 리드선 길이에 따른 뇌과전압 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.257-263
    • /
    • 2016
  • This paper describes the lightning arrester transients in cable head termination. The installation references of cable head tower and lightning arresters are firstly reviewed, then the performance of lightning arrester operation is also evaluated based on lightning overvoltage analysis by the change of grounding lead cable length. This paper finally proposes the optimal length of grounding lead cable at the cable head termination. The limited lightning current is also proposed according to the change of grounding lead cable length. The results will contribute to protecting insulation breakdown failure against lightning surge at the terminations and joints.

A Study on Energy Characteristics in Transient States of OF Cable Systems (OF 케이블 계통에서 과도상태시 에너지 특성 검토)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Lee, Dong-Il;Seo, Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.468-475
    • /
    • 2006
  • This paper reviews the energy characteristics of oil filled cables in transient state such as grounding fault and lightning surge. Artificial grounding fault test was firstly performed in 2003 for the analysis of arc voltage and breakdown energy according to the fault current. In this paper, energy of OF cable is variously analysed at joint box based on the actual test. Then more various conditions such as installation types, section lengths and CCPU(Cable Covering Protection Unit) connection types are applied for the simulation using EMTP when the single line to ground fault and direct lightning stroke are occurred on actual underground power cable systems and combined power cable systems, respectively. Finally, the energy by the length of crossbonded lead and grounding lead as well as fault lasting time is also calculated using EMTP simulation.

The study on the prevention of DC feeder line cable grounding fault (DC 급전케이블 지락사고 보호방안에 관한 연구)

  • Park, Ji-Soo;Song, Joong-Ho;Park, Joung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.202-207
    • /
    • 2008
  • This study provides review and improvement plans for the possible problems caused when the CV cable is used as a positive feeder line which supplies power from the DC HSCB (high-speed circuit breaker) to the catenariesin Seoul Metro which is using direct-current feeder method. In detail, this study contributes to stabilizing the power line by triggering a protective device by instantly detecting potential rise which happens when grounding fault occurs in non-grounding type CV cable shield.

  • PDF

Analysis of Sheath Induced Voltage in Transmission Power Cable Connected with CCPU (방식층 보호장치의 설치에 따른 지중송전케이블 시스 유기전압 해석)

  • Lee, Jun-Sung;Lee, Jong-Beom;Kim ,Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • This paper describes the sheath induced voltage in underground transmission cable system which will be operated with cable cover protection unit(CCPU). Simulation was carried out to analyze the sheath induced voltage in the real cable system which was installed by 154㎸ CV cable in the case with and without CCPU. The sheath induced voltage will be also analyzed according to the change of grounding method, fault resistance and fault angle. Simulation was performed using EMTP and ATP Draw, the simulation results show whether the CCPU in necessary or not in underground transmission power cable system.

  • PDF

A Study on the Surge Analysis considering Surge Arrester and Grounding System in the Combined Distribution System (혼합 배전계통에서 피뢰기적용과 접지시스템 변경을 고려한 서지 해석에 관한 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.204-205
    • /
    • 2006
  • This paper describes the protective ability of lightning arrestor in combined distribution system with power cable. To evaluate the protective ability, change of arrestor and grounding location are considered. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability as in underground system, when arrestor occurs failure has overhead line. The result shows that lightning arrestor in combined distribution system with power cable protect effectively when failure at arrestor in overhead line. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability in underground distribution system, when arrestor of overhead line has failure. The result shows that lightning arrestor installed in underground cable can effectively protected cables from surge when arrestor of overhead line has failure. And also even though grounding locations are decreased, it is revealed that protective ability is nearly similar.

  • PDF

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

Analysis on System Effects of SUS Tube in Optical Fiber Composite Power Cable Systems Using EMTP (EMTP를 이용한 광 복합 지중송전케이블 광 유니트 금속관의 시스템 영향분석)

  • Jung, Chae-Kyun;Jang, Tai-In;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1180-1185
    • /
    • 2014
  • This paper describes the effects on SUS tube of power optical fiber composite cable on underground transmission lines. The effects on grounding, air gap between SUS tube and metal sheath, contact resistance between outer semi-conducting layer and metal sheath and grounding of SUS tube application or not are variously analysed using EMTP in normal operating condition as well as single line to ground fault. From these results, in this paper, the scheme for protecting the electrically abnormal phenomena will be established on power-optical fiber composite cable of underground transmission lines. This paper can contribute to specification of grounding reference of SUS tube of optical fiber composite power cable system.

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System (지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Jang, Seong-Whan;Kim, Yong-Kap;Kwon, Shin-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.