• Title/Summary/Keyword: Ground-based radar

Search Result 225, Processing Time 0.026 seconds

Optimal Path Planning for UAVs under Multiple Ground Threats (다수 위협에 대한 무인항공기 최적 경로 계획)

  • Kim, Bu-Seong;Bang, Hyo-Chung;Yu, Chang-Gyeong;Jeong, Eul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • This paper addresses the trajectory optimization of Unmanned Aerial Vehicles(UAVs) under multiple ground threats like enemy's anti-air radar sites. The power of radar signal reflected by the vehicle and the flight time are considered in the performance cost to be minimized. The bank angle is regarded as control input for a 1st-order lag vehicle, and input parameter optimization method based on Sequential Quadratic Programming (SQP) is used for trajectory optimization. The proposed path planning method provides more practical trajectories with enhanced survivability than those of Voronoi diagram method.

Rice Crop Monitoring Using RADARSAT

  • Suchaichit, Waraporn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.37-37
    • /
    • 2003
  • Rice is one of the most important crop in the world and is a major export of Thailand. Optical sensors are not useful for rice monitoring, because most cultivated areas are often obscured by cloud during the growing period, especially in South East Asia. Spaceborne Synthetic Aperture Radar (SAR) such as RADARSAT, can see through regardless of weather condition which make it possible to monitor rice growth and to retrieve rice acreage, using the unique temporal signature of rice fields. This paper presents the result of a study of examining the backscatter behavior of rice using multi-temporal RADARSAT dataset. Ground measurements of paddy parameters and water and soil condition were collected. The ground truth information was also used to identify mature rice crops, orchard, road, residence, and aquaculture ponds. Land use class distributions from the RADARSAT image were analyzed. Comparison of the mean DB of each land use class indicated significant differences. Schematic representation of temporal backscatter of rice crop were plotted. Based on the study carried out in Pathum Thani Province test site, the results showed variation of sigma naught from first tillering vegatative phase until ripenning phase. It is suggested that at least, three radar data acquisitions taken at 3 stages of rice growth circle namely; those are at the beginning of rice growth when the field is still covered with water, in the ear differentiation period, and at the beginning of the harvest season, are required for rice monitoring. This pilot project was an experimental one aiming at future operational rice monitoring and potential yield predicttion.

  • PDF

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

Imaging Method in Time Domain for Bistatic Forward-Looking Radar in Short Range Application (근거리 Bistatic 전방 관측 레이다의 시간 영역 영상화 기법)

  • Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Park, Gyu-Churl;Ha, Jong-Soo;Han, Seung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1054-1062
    • /
    • 2011
  • This study describes the time domain imaging algorithm which can be well applied to short-range UWB(ultra wideband) bistatic radar. In the imaging method of SAR technology, the frequency domain method is well applied to the areas which satisfy far-field condition. However in the near-field environment, the image quality is not good due to phase error. However back-projection method based on time domain is well applied to short-range imaging radar. Meanwhile because its processing time is very long, real time-processing is very difficult. To resolve this problem FFBP(Fast Factorized Back-Projection) was proposed. Using the raw data gathered on field we implemented back-projection and FFBP method. Then image quality and processing time were analyzed using these methods.

A Study on Anomalous Propagation Echo Identification using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 이상전파에코 식별방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.89-90
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo all over the world. This paper conducts researches about a classification method which can distinguish anomalous propagation echo in the radar data using naive Bayes classifier and unique attributes of the echo such as reflectivity, altitude, and so on. It is confirmed that the fine classification results are derived by verifying the suggested naive Bayes classifier using actual appearance cases of the echo.

  • PDF

Application of the Radar Rainfall Estimates Using the Hybrid Scan Reflectivity Technique to the Hydrologic Model (Hybrid Scan Reflectivity 기법을 이용한 레이더 강우량의 수문모형 적용)

  • Lee, Jae-Kyoung;Lee, Min-Ho;Suk, Mi-Kyung;Park, Hye-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.867-878
    • /
    • 2014
  • Due to the nature of weather radar, blank areas occur due to impediments to observation, such as the ground clutter. Radar beam blockages have resulted in the underestimation rainfall amounts. To overcome these limitations, this study developed the Hybrid Scan Reflectivity (HSR) technique and compared the HSR results with existing methods. As a result, the HSR technique was able to estimate rainfalls in areas from which no reflectivity information was observable using existing methods. In case of estimating rainfalls depending on reflectivity scan techniques and beam-blockage/non beam-blockage, the HSR accuracy is superior. Furthermore, rainfall amounts derived from each method was inputted to the HEC-HMS to examine the accuracy of the flood simulations. The accuracy of the results using the HSR technique in contrast to the RAR calculation system and M-P relation was improved by 7% and 10%(based on correlation coefficients), and 18% and 34%(based on Nash-Sutcliffe Efficiency), on average, respectively. Therefore, it is advised that the HSR technique be utilized in the hydrology field to estimate flood discharge more accurately.

Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset (합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석)

  • Ji-Hoon Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

The Impact of Data Assimilation on WRF Simulation using Surface Data and Radar Data: Case Study (지상관측자료와 레이더 자료를 이용한 자료동화가 수치모의에 미치는 영향: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • The effect of 3DVAR (Three Dimension Variational data Assimilation) was examined by comparing observation and the simulations of CNTL (to which data assimilation was not applied) and ALL (to which data assimilation was applied using ground observation data and radar data) for the case of a heavy snowfall event (case A) of 11-12 February 2011 in the Yeongdong region. In case A, heavy snow intensively came in the Yeongdong coastal region rather than Daegwallyeong, in particular, around the Gangneung and Donghae regions with total precipitation in Bukgangneung at approximately 91 mm according to the AWS observation. It can be seen that compared to CNTL, ALL simulated larger precipitation along the Yeongdong coastline extending from Sokcho to Donghae while simulating smaller precipitation for inland areas including Daegwallyeong. On comparison of the total accumulated precipitations from simulations of CNTL and ALL, and the observed total accumulated precipitation, the positive effect of the assimilation of ground observation data and radar data could be identified in Bukgangneung and Donghae, on the other hand, the negative effect of the assimilation could be identified in the Daegwallyeong and Sokcho regions. In order to examine the average accuracy of precipitation prediction by CNTL and ALL for the entire Gangwon region including the major points mentioned earlier, the three hour accumulated precipitation from simulations of CNTL and ALL were divided into 5, 10, 15, 20, 25 and 30 mm/3hr and threat Scores were calculated by forecasting time. ALL showed relatively higher TSs than CNTL for all threshold values although there were some differences. That is, when considered generally based on the Gangwon region, the accuracy of precipitation prediction from ALL was improved somewhat compared to that from CNTL.

Analysis of Sea Clutter Removal Capability in a Weather Radar Based on a Vertical Phased Array Antenna (수직 위상 배열 안테나 기반 기상 레이다에서의 해수면 클러터 제거 성능 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.155-161
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are contaminated by the ground and sea clutter. Since most of ground clutter appears around the very narrow low Doppler frequency region, it is somewhat easy to separate. However, the sea clutter removal is very difficult since it can occupy the broad Doppler frequency region according to weather conditions. Therefore, in this paper, the sea clutter removal capability is analyzed for a phased array weather radar which use vertical array elements for electronic elevation beam steering. Also, it is shown that the sea clutter removal can be achieved appropriately using the receiver beam forming technology in a phased array antenna.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.