DOI QR코드

DOI QR Code

Application of the Radar Rainfall Estimates Using the Hybrid Scan Reflectivity Technique to the Hydrologic Model

Hybrid Scan Reflectivity 기법을 이용한 레이더 강우량의 수문모형 적용

  • Lee, Jae-Kyoung (Weather Radar Center, Korea Meteorological Administration) ;
  • Lee, Min-Ho (Weather Radar Center, Korea Meteorological Administration) ;
  • Suk, Mi-Kyung (Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Hye-Sook (Weather Radar Center, Korea Meteorological Administration)
  • Received : 2014.07.09
  • Accepted : 2014.09.19
  • Published : 2014.10.31

Abstract

Due to the nature of weather radar, blank areas occur due to impediments to observation, such as the ground clutter. Radar beam blockages have resulted in the underestimation rainfall amounts. To overcome these limitations, this study developed the Hybrid Scan Reflectivity (HSR) technique and compared the HSR results with existing methods. As a result, the HSR technique was able to estimate rainfalls in areas from which no reflectivity information was observable using existing methods. In case of estimating rainfalls depending on reflectivity scan techniques and beam-blockage/non beam-blockage, the HSR accuracy is superior. Furthermore, rainfall amounts derived from each method was inputted to the HEC-HMS to examine the accuracy of the flood simulations. The accuracy of the results using the HSR technique in contrast to the RAR calculation system and M-P relation was improved by 7% and 10%(based on correlation coefficients), and 18% and 34%(based on Nash-Sutcliffe Efficiency), on average, respectively. Therefore, it is advised that the HSR technique be utilized in the hydrology field to estimate flood discharge more accurately.

기상레이더의 관측 특성상, 지형클러터 등의 관측영역 한계로 인한 관측공백 지역이 발생한다. 이러한 레이더 빔의 차폐는 강우량의 과소추정 원인이 된다. 이를 해결하기 위해 본 연구에서는 Hybrid Scan Reflectivity (HSR) 기법을 개발하고 기존 방법 결과와 비교하였다. 결과에 의하면, 기존 레이더 관측방법으로 지형에 의해 반사도 정보를 얻지 못하는 영역에 대하여 HSR 기법이 레이더 강우량을 추정할 수 있음을 확인하였다. 반사도 스캔기법과 빔차폐/비 빔차폐영역에서 모두 HSR 기법을 적용한 결과가 정확성이 가장 뛰어났다. 다음으로 각 방법별 레이더 추정 강우량을 HEC-HMS에 적용하여 홍수 유출량 추정 정확성을 평가하였다. HSR 기법에 의한 유출량은 RAR 산출 시스템과 M-P 관계식 대비 상관계수는 평균 7%와 10%, Nash-Sutcliffe Efficiency는 평균 18%와 34% 향상되었다. 따라서 정확한 홍수량 추정을 위해 수문분야에 HSR 기법에 의해 추정된 강우량을 활용할 필요성이 있는 것으로 사료된다.

Keywords

References

  1. Atlas, D., Rosenfeld, D., and Wolff, D.B. (1990). "Climatologically tuned reflectivity-rain rate relations and links to area time integrals." Journal of Meteorology, Vol. 29, pp. 1120-1139. https://doi.org/10.1175/1520-0450(1990)029<1120:CTRRRR>2.0.CO;2
  2. Battan, L.J. (1993). Radar Observation of the Atmosphere, The University of Chicago Press, pp. 324.
  3. Crum, T.D., and Alberty, R.L. (1993). "The WSR-88D and the WSR-88D operational support facility." Bulletin of the American Meteorological Society, Vol. 74, pp. 1669-1687. https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
  4. Fulton, R.A., Breidenbach, J.P., Seo, D.-J., Miller, D.A., and O'Bannon, T. (1998). "The WSR-88D rainfall algorithm." Weather and Forecasting, Vol. 13, pp. 377-395. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  5. Maddox, R., Zhang, J., Gourley, J.J., and Howard, K. (2002). "Weather radar coverage over the contiguous United States."Weather and Forecasting, Vol. 17, pp. 927-934. https://doi.org/10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2
  6. Marshall, J.S., and Palmer, W.M. (1948). "The distribution of raindrops with size." Journal ofMeteorology, Vol. 5, pp. 165-166.
  7. National Institute of Meteorological Research (2010). Research for the meteorological observation technology and its application (II), Scientific Research Report, National Institute of Meteorological Research, Korean Meteorological Agency.
  8. O'Bannon, T. (1997). "Using a 'terrain-based' hybrid scan to improve WSR-88D precipitation estimates." Proceeding of 28th Conference on Radar Meteorology, Austin, TX, American Meteorology, pp. 506-507.
  9. Rosenfeld, D., Wolff, D.B., and Atlas, D. (1993). "General probability-matched relations between radar reflectivity and rain rate." Journal of Applied Meteorology, Vol. 32, pp. 50-72. https://doi.org/10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
  10. Shedd, R.C., Smith, J.A., andWalton, M.K. (1991). "Sectorized hybrid scan strategy of the NEXRAD precipitation processing system." Hydrological Applications of Weather Radar, I. Cluckie and C. Collier, Eds. Ellis Horwood Limited, pp. 151-159.
  11. Smith, J.A. (1993). "Marked point process models of raindrop-size distributions." Journal of Applied Meteorology, Vol. 32, pp. 284-296. https://doi.org/10.1175/1520-0450(1993)032<0284:MPPMOR>2.0.CO;2
  12. Smith, J.A., and Krajewski, W.F. (1993). "A modeling study of rainfall rate-reflectivity relationships." Weather Resources Research, Vol. 29, pp. 2505-2514. https://doi.org/10.1029/93WR00962
  13. US Army Corps of Engineers. (2008). Hydrologic Modeling System, HEC-HMS Release Notes Version 3.3, Hydrologic Engineering Center.
  14. Weather Radar Center (2013). Development of application of cross governmental dual-pol radar harmonization[1], Korea Meteorological Administration.
  15. Woodley, W., Olsen, A., Herndom, A., and Wiggert, V. (1974). "Optimizing the measurement of convective rinafall in Florida." NOAA Tech. Memo. ERL-WMPO-18, Boulder, Colorado, pp. 99.
  16. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, V.C., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.-J., Wells, E., and Dempsey, C. (2011). "National mosaic and multi-sensor QPE(NMQ) system: Description, results, and future plans." Bulletin of the American Meteorological Society, Vol. 92, pp. 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1