• 제목/요약/키워드: Ground-based GNSS

검색결과 81건 처리시간 0.037초

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF

EGNOS 사례를 활용한 KASS 비행시험 요구 사항 분석 (Analysis of KASS Flight Test Requirements using The EGNOS)

  • 손성진;홍교영;홍운기;김군택
    • 한국항행학회논문지
    • /
    • 제21권6호
    • /
    • pp.579-584
    • /
    • 2017
  • SBAS는 위성기반 항법보정시스템으로 지상국에서의 GNSS신호 분석을 기반으로 정지궤도위성을 통해 GNSS신호의 보정정보와 무결성정보를 제공하는 시스템이다. 한국형 SBAS인 KASS는 2022년 APV-1급 SoL서비스를 목표로 하고 있다. SoL서비스를 제공하기 위해서는 충분한 각종 지상 및 비행시험이 사전에 수행되어야 한다. 그러나 국내에서는 아직 한국형 SBAS인 KASS가 증축되지 않은 관계로 구체적 세부 평가항목이 제시되어 있지 않다. KASS와 호환성이 가장 높을 것이라 예상되고 현재 개발 후 서비스되어 지고 있는 EGNOS는 평가항목이 이미 제시되어있다. 본 논문에서는 EGNOS 구축에 적용된 규정서를 분석하여 비행시험시 요구되는 지상 및 비행시험 평가항목들의 기준을 분석하였고 이는 향후, 국가가 수행하는 비행점검 과정에 참고 될 수 있을 것으로 기대된다.

위성항법시스템 적용을 위한 전리층 기본 연구 (Preliminary Study of Ionosphere for Global Navigation Satellite Systems)

  • 양태형;이영재;전향식;남기욱;김정래
    • 한국항공운항학회지
    • /
    • 제14권1호
    • /
    • pp.55-62
    • /
    • 2006
  • Ionospheric signal delay is a critical factor for precision differential GNSS(Global Navigation Satellite Systems) applications such as GBAS(Ground-Based Augmentation System) and SBAS (Satellite-Based Augmentation System). Most concern is the impact of the ionospheric storm caused by the interaction between Solar and geomagnetic activities. After brief description of the ionosphere and ionospheric storm, ionospheric models for SBAS are discussed. History of recent ionospheric storms is reviewed and their impact on GNSS is discussed. In order to support Korean GNSS augmentation system development, a preliminary study on the regional ionosphere performed. A software tool for computing regional ionospheric maps is being developed, and initial results during a recent storm period is analyzed.

  • PDF

선회착륙공항에서의 GNSS 비정밀접근 및 정밀접근 적용 연구 (Application of GNSS Non-Precision and Precision Approaches to a Circle-to-Land Approach Airport)

  • 김연명;강자영
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.65-85
    • /
    • 2004
  • Circling to land is a relatively dangerous maneuver. It contains the worst elements of IFR flight. There is a minimum obstruction clearance, a limited space in which to maneuver, an absence of visual reference, and trying to keep the runway in sight while preparing to land. At night it is quite a bit more than dangerous. The required continuous turn in marginal conditions that keeps the airport in sight is hazardous. Therefore, this paper proposes an application of GNSS to circling approach to reduce or remove chances of accidents which may occur under such unfavorable flight conditions. The study reviews relevant documents published by ICAO and FAA and provides scenarios for non-precision and precision approaches and circling approach based on the GNSS for Kimhae airport. Also requirements for the ground facility design are studied and provided.

  • PDF

IGS 정밀궤도력을 이용한 SBAS 위성궤도 및 시계보정정보의 정확도 분석 (Accuracy Analysis of SBAS Satellite Orbit and Clock Corrections using IGS Precise Ephemeris)

  • 정명숙;김정래
    • 한국항행학회논문지
    • /
    • 제13권2호
    • /
    • pp.178-186
    • /
    • 2009
  • SBAS(Satellite Based Augmentation System) 시스템에서는 GNSS 사용자들의 위치 정확도 향상을 위해 위성궤도 및 시계보정정보를 제공하고 있는데, 본 논문에서는 이러한 보정정보의 정확도에 대해 분석하였다. IGS(International GNSS Service)에서 제공하는 GPS 위성의 정밀궤도력을 참값으로 가정하고, 그에 대한 오차를 이용하여 정확도를 분석/수행하였다. 이때 IGS 정밀궤도력과의 정확한 비교를 위해 GPS 위성에 대한 안테나 위상중심 편차와 P1-C1 편이를 고려하였다. SBAS 위성궤도 및 시계보정 정보로는 미국의 WAAS와 일본의 MSAS 보정정보를 이용하였다. 정확도 분석을 통해 SBAS에서 제공하는 위성궤도 보정정보와 위성시계 보정정보가 상당한 상관관계를 가지고 있음을 확인하였다. 또한 보정정보의 정확도는 SBAS 시스템의 지상 네트워크 크기와 위성의 궤적에 영향을 받는 것을 확인하였다.

  • PDF

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

FPGA 기반의 갈릴레오 E1 및 E5 신호 처리 구현 및 성능에 관한 연구 (A Study on the Implementation and Performance Analysis of FPGA Based Galileo E1 and E5 Signal Processing)

  • 신천식;이상욱;윤동원;김재훈
    • 한국위성정보통신학회논문지
    • /
    • 제4권1호
    • /
    • pp.36-44
    • /
    • 2009
  • 본 논문에서는 위성항법신호감시국에 대한 핵심기술인 FPGA 기반의 위성항법수신기를 구현하여 갈릴레오 E1 및 E5 신호처리 동작검증 및 처리결과를 제시하였다. 성능 검증을 위해 시제품 형태의 위성항법안테나, 112MHz 샘플링 주파수 및 8비트 양자화 레벨을 제공하는 RF/IF 유니트를 이용하여 갈릴레오 시험위성인 지오베-B(GIOVE-B)로부터 E1 및 E5를 수신하여 이용하였고, 수신된 데이터에 대한 신호처리 수행을 통해, FPGA 기반의 항법수신기 모듈에서 갈릴레오 E1 및 E5 신호가 정상적으로 동작됨을 입증하였다.

  • PDF

Orbit Ephemeris Failure Detection in a GNSS Regional Application

  • Ahn, Jongsun;Lee, Young Jae;Won, Dae Hee;Jun, Hyang-Sig;Yeom, Chanhong;Sung, Sangkyung;Lee, Jeong-Oog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.89-101
    • /
    • 2015
  • To satisfy civil aviation requirements using the Global Navigation Satellite System (GNSS), it is important to guarantee system integrity. In this work, we propose a fault detection algorithm for GNSS ephemeris anomalies. The basic principle concerns baseline length estimation with GNSS measurements (pseudorange, broadcasted ephemerides). The estimated baseline length is subtracted from the true baseline length, computed using the exact surveyed ground antenna positions. If this subtracted value differs by more than a given threshold, this indicates that an ephemeris anomaly has been detected. This algorithm is suitable for detecting Type A ephemeris failure, and more advantageous for use with multiple stations with various long baseline vectors. The principles of the algorithm, sensitivity analysis, minimum detectable error (MDE), and protection level derivation are described and we verify the sensitivity analysis and algorithm availability based on real GPS data in Korea. Consequently, this algorithm is appropriate for GNSS regional implementation.