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Abstract

To satisfy civil aviation requirements using the Global Navigation Satellite System (GNSS), it is important to guarantee system 

integrity. In this work, we propose a fault detection algorithm for GNSS ephemeris anomalies. The basic principle concerns 

baseline length estimation with GNSS measurements (pseudorange, broadcasted ephemerides). The estimated baseline length 

is subtracted from the true baseline length, computed using the exact surveyed ground antenna positions. If this subtracted 

value differs by more than a given threshold, this indicates that an ephemeris anomaly has been detected. This algorithm 

is suitable for detecting Type A ephemeris failure, and more advantageous for use with multiple stations with various long 

baseline vectors.

The principles of the algorithm, sensitivity analysis, minimum detectable error (MDE), and protection level derivation are 

described and we verify the sensitivity analysis and algorithm availability based on real GPS data in Korea. Consequently, this 

algorithm is appropriate for GNSS regional implementation.
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1. Introduction

The Global Navigation Satellite System (GNSS) is used to 

compute user navigation solutions with certain accuracy 

at any time and location of interest. With increasing GNSS 

applications, the civil aviation community has been trying to 

implement primary navigation systems using GNSS. To ensure 

aircraft safety in the civil aviation implementation of GNSS, 

the implemented system must meet integrity requirements.

Research on various GNSS implemented systems and on the 

use of ground facilities, additional satellites, and navigation 

sensors, has been conducted to address integrity issues [1]

[2]. The main line of integrity issues includes threat definition, 

development of detection algorithms within time to alert, and 

the protection level (PL) for confidence in the user navigation 

solution. One of the threats facing GNSS involves orbit 

ephemerides, which are generated periodically at a ground 

control facility (a GPS Operation Control Segment) and are 

transmitted to the user by satellites [3]. The frequency of the 

ephemeris anomaly tends to decrease, however. Because the 

ramifications for user position error is critical, the system 

must include monitoring and detection processing [4][5].
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Ephemeris anomalies are conventionally divided into 

two groups (Types A and B) with respect to the occurrence 

of satellite maneuvers. Type A is an ephemeris failure event 

during the process of a satellite maneuver, whereas Type B 

can be issued in ephemeris generation or transmission but 

no satellite maneuver is involved [6].

Various methods have been proposed for the detection 

of both Type A and Type B ephemeris anomalies. Type 

B events can be detected by examining the consistency 

between the broadcast ephemeris and prior validated 

ephemeris. The magnitude of detectable satellite position 

error due to a Type B anomaly depends on the validated time 

of a prior ephemeris. Representative algorithms include 

the ephemeris-ephemeris test, YE-TE test, and almanac-

ephemeris test. They compute satellite position and monitor 

consistency of results within a given threshold [7]. However, 

these algorithms have the limitation of requiring a validated 

prior ephemeris, and hence cannot detect Type A ephemeris 

failure. On the other hand, Type A failure is relatively more 

difficult to detect than Type B because there is no validated 

prior ephemeris to compare with the ephemeris of a satellite 

just after an orbit maneuver. One method of detecting Type 

A failure is to monitor the range measurement correction 

(pseudorange correction, PRC) derived from the broadcast 

ephemeris and the location of the ground station antenna 

[7]. Other methods estimate satellite position error with 

range measurements [8][9] or estimate the differential 

range of ground stations with short baseline vectors and 

range measurements [10][13]. However, these algorithms 

have some weaknesses. First, when the direction of satellite 

position error is orthogonal to the line-of-sight, ephemeris 

failure on test statistics is small. Next, there is the limitation 

of baseline length (short baseline, 100-400 m), and using 

carrier phase measurement that must resolve integer 

ambiguity.

To supplement these algorithms, we propose a detection 

algorithm using non-limited baseline length and code 

measurement for Type A failures. This methodology, based 

on the law of cosines in trigonometry, estimates the baseline 

lengths of multiple ground antennas. 

We describe the methodology in more detail in the 

following sections. In section 2, we introduce the concept 

of the algorithm, describe test statistics and a threshold, 

analyze sensitivity [14] between test statistics and ephemeris 

failure, and derive the ephemeris protection level (EPL) and 

MDE [15] for algorithm availability. In section 3, we focus 

on evaluating the algorithm described above using real GPS 

data. So, we evaluated sensitivity analysis and availability 

performance using MDE and ephemeris protection level 

for landing aircraft using real GPS data of multiple reference 

stations (RSs) in Korea. Finally, we describe the conclusions 

and future work in section 4.

2. Baseline Length Estimation Algorithm

This section introduces the concept of the proposed 

algorithm (test statistics and threshold), analyses the 

sensitivity of test statistics according to satellite position 

error due to ephemeris failure, and derives the MDE, which 

is the performance parameter of fault detection, and the 

ephemeris protection level.

2.1 Principle of the Algorithm

The detection methodology estimates the baseline 

length between reference station (RS) antennas using range 

measurements of RS and the broadcast ephemeris to be 

validated. The baseline length is assumed to be error-free 

because RS antenna location is computed accurately and 

precisely. In this section, we describe the estimation method 

for single baseline length based on two RSs. According to the 

First Cosine Law, one side length of triangle can be computed 

using the other two sides’ length and their induced angle. In 

Fig. (1), this law can be applied in GNSS implementation. One 

side of the triangle represents the length of the displacement 

vector 
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the range measurements (also called pseudorange correction). The receiver clock error is also 

reduced by subtraction of range measurements between satellites on common RS (called the 
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measurement accuracy.  

However, in this work, a model-based mitigation method is used to mitigate range 

measurement errors arising from the ionosphere and troposphere. The receiver clock bias is 

estimated by computation of the user’s position in a process using the weighted least squares 

method. Despite the adverse effect on accuracy of range measurements, we recognized that 

combining single and double difference methods posed a contradiction in this algorithm 

because these methods use the broadcast ephemeris (to be validated by test statistics). The 

test statistics and validated ephemeris must be independent for reliable ephemeris fault 

detection. In addition, the required range is not a relative value, but an absolute measurement. 

The methods for mitigating range measurement errors are summarized in Table 1. 
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Several methods are introduced to mitigate part of the 

error in range measurement. First, a model-based mitigation 

method is proposed for ionosphere delay and troposphere 

delay error. The range differential method then estimates 

range errors by subtracting the true range from the range 

measurements (also called pseudorange correction). The 

receiver clock error is also reduced by subtraction of range 

measurements between satellites on common RS (called the 

double difference between satellites). As described above, 

the combination of subtraction of receivers and satellites 

gives the best performance from the perspective of relative 

range measurement accuracy. 

However, in this work, a model-based mitigation method 

is used to mitigate range measurement errors arising from 

the ionosphere and troposphere. The receiver clock bias 

is estimated by computation of the user’s position in a 

process using the weighted least squares method. Despite 

the adverse effect on accuracy of range measurements, we 

recognized that combining single and double difference 

methods posed a contradiction in this algorithm because 

these methods use the broadcast ephemeris (to be 

validated by test statistics). The test statistics and validated 

ephemeris must be independent for reliable ephemeris 

fault detection. In addition, the required range is not a 

relative value, but an absolute measurement. The methods 

for mitigating range measurement errors are summarized 

in Table 1.

The threshold for ephemeris failure detection is 

determined by the probability property of the test statistics 

and system continuity requirements. We assume that test 

statistics follow a Gaussian distribution [11] with a zero 

mean, and that the continuity requirement (LAAS CAT-I, 

which is the probability of false alarm in case of the first 

rising of the day) is 1.9×10-4 (KFFA=3.73) [12]. The threshold 

(TH) is also designed with respect to satellite elevation for 

navigation integrity and continuity, according to equation 

(4). Because test statistics are affected by corrected range 

measurements, the threshold has a stringent boundary as 

satellite elevation increases relative to the case of a satellite 

at low elevation.
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Gaussian distribution [11] with a zero mean, and that the continuity requirement (LAAS 

CAT-I, which is the probability of false alarm in case of the first rising of the day) is 
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2.2 Sensitivity Analysis 

Various geometry conditions can be formed between ground baseline vectors and satellites. 

Consequently, the detection performance of this algorithm depends on the geometry condition. 

In this section, we derive the relationship between satellite position error and the test statistics 

and analyze the properties of this algorithm with regard to geometry [14]. 

In equation (5) and Fig. 2, we define ,i f
Ae , ,i f

Be to be unit line-of-sight (LOS) vectors from 

two RS antennas (A, B) to the satellite i when ephemeris failure occurs. i
Ae  and i

Be , i  is 

geometry range between RS and the satellite i , and iR


 represents the faulty vector of 

satellite i [13]. 

(4)
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Gaussian distribution [11] with a zero mean, and that the continuity requirement (LAAS 
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2.2 Sensitivity Analysis 

Various geometry conditions can be formed between ground baseline vectors and satellites. 

Consequently, the detection performance of this algorithm depends on the geometry condition. 

In this section, we derive the relationship between satellite position error and the test statistics 

and analyze the properties of this algorithm with regard to geometry [14]. 
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Several methods are introduced to mitigate part of the error in range measurement. First, a 

model-based mitigation method is proposed for ionosphere delay and troposphere delay error. 

The range differential method then estimates range errors by subtracting the true range from 

the range measurements (also called pseudorange correction). The receiver clock error is also 

reduced by subtraction of range measurements between satellites on common RS (called the 

double difference between satellites). As described above, the combination of subtraction of 

receivers and satellites gives the best performance from the perspective of relative range 

measurement accuracy.  

However, in this work, a model-based mitigation method is used to mitigate range 

measurement errors arising from the ionosphere and troposphere. The receiver clock bias is 

estimated by computation of the user’s position in a process using the weighted least squares 

method. Despite the adverse effect on accuracy of range measurements, we recognized that 

combining single and double difference methods posed a contradiction in this algorithm 

because these methods use the broadcast ephemeris (to be validated by test statistics). The 

test statistics and validated ephemeris must be independent for reliable ephemeris fault 

detection. In addition, the required range is not a relative value, but an absolute measurement. 

The methods for mitigating range measurement errors are summarized in Table 1. 
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the test statistics and system continuity requirements. We assume that test statistics follow a 
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2.2 Sensitivity Analysis 

Various geometry conditions can be formed between ground baseline vectors and satellites. 

Consequently, the detection performance of this algorithm depends on the geometry condition. 

In this section, we derive the relationship between satellite position error and the test statistics 

and analyze the properties of this algorithm with regard to geometry [14]. 

In equation (5) and Fig. 2, we define ,i f
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Figure 2. Geometry of ephemeris fault condition. 

 

 

Substituting equation (5) into equation (2) yields equation (6).  
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ABe  : Unit baseline vector ( ABx ) 
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Equation (6) can be simplified in local coordinates that use the baseline vector as the x-axis. 

Figure (3) shows the local coordinates and the geometry of the satellite. 

(5)

Substituting equation (5) into equation (2) yields equation (6). 
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The baseline unit vector of equation (6) can be derived as equation (9) [10], 
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and substituting equation (9) into equation (6) yields [18] 
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Equation (10) shows the sensitivity relationship between test statistics and the fault in 

satellite location resulting from ephemeris failure. When the Schwarz inequality is applied in 

equation (10), we can derive the sensitivity relation in the worst-case geometry condition. 
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This shows that the sensitivity increases when the local elevation angle and the azimuth 

angle are close to 0° and 90°, respectively. Accordingly, given these properties, this algorithm 

is sufficient for fault detection for rising satellites of low elevation angle. From a local 

azimuth perspective, various baseline vectors are required using multiple RS and baseline 

length should be extended to increase the satellite’s induced angle. This means that the 

algorithm above is applicable for wide-area implementations of GNSS such as Space-Based 

Augmentation System (SBAS) and Ground Regional Augmentation System (GRAS) rather 

than narrow-area implementations. 

 

2.3 Ephemeris Protection Level and MDE 

GNSS implementations conduct a two-step process to ensure navigation integrity. First, the 
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10 

The baseline unit vector of equation (6) can be derived as equation (9) [10], 

[1 0 0]T
ABe 
                                    (9) 
 

and substituting equation (9) into equation (6) yields [18] 

 Ti i i
AB AB L

TS E R 


                                (10) 

  Ti i
AB AB ABL

E E e   
                             (11) 

 
 

 
 

2 2 2

2

cos cos cos

cos cos sin cos sin
cos sin cos cos

T

A B
Ti

AB A A B BL

A B

E

  

    
   

 
 

  
   

  

 

Equation (10) shows the sensitivity relationship between test statistics and the fault in 

satellite location resulting from ephemeris failure. When the Schwarz inequality is applied in 

equation (10), we can derive the sensitivity relation in the worst-case geometry condition. 

 Ti i i
AB AB L

TS E R


                                (12) 

 

This shows that the sensitivity increases when the local elevation angle and the azimuth 

angle are close to 0° and 90°, respectively. Accordingly, given these properties, this algorithm 

is sufficient for fault detection for rising satellites of low elevation angle. From a local 

azimuth perspective, various baseline vectors are required using multiple RS and baseline 

length should be extended to increase the satellite’s induced angle. This means that the 

algorithm above is applicable for wide-area implementations of GNSS such as Space-Based 

Augmentation System (SBAS) and Ground Regional Augmentation System (GRAS) rather 

than narrow-area implementations. 

 

2.3 Ephemeris Protection Level and MDE 

GNSS implementations conduct a two-step process to ensure navigation integrity. First, the 

(10)

 
10 

The baseline unit vector of equation (6) can be derived as equation (9) [10], 

[1 0 0]T
ABe 
                                    (9) 
 

and substituting equation (9) into equation (6) yields [18] 

 Ti i i
AB AB L

TS E R 


                                (10) 

  Ti i
AB AB ABL

E E e   
                             (11) 

 
 

 
 

2 2 2

2

cos cos cos

cos cos sin cos sin
cos sin cos cos

T

A B
Ti

AB A A B BL

A B

E

  

    
   

 
 

  
   

  

 

Equation (10) shows the sensitivity relationship between test statistics and the fault in 

satellite location resulting from ephemeris failure. When the Schwarz inequality is applied in 

equation (10), we can derive the sensitivity relation in the worst-case geometry condition. 

 Ti i i
AB AB L

TS E R


                                (12) 

 

This shows that the sensitivity increases when the local elevation angle and the azimuth 

angle are close to 0° and 90°, respectively. Accordingly, given these properties, this algorithm 

is sufficient for fault detection for rising satellites of low elevation angle. From a local 

azimuth perspective, various baseline vectors are required using multiple RS and baseline 

length should be extended to increase the satellite’s induced angle. This means that the 

algorithm above is applicable for wide-area implementations of GNSS such as Space-Based 

Augmentation System (SBAS) and Ground Regional Augmentation System (GRAS) rather 

than narrow-area implementations. 

 

2.3 Ephemeris Protection Level and MDE 

GNSS implementations conduct a two-step process to ensure navigation integrity. First, the 

(11)

 
10 

The baseline unit vector of equation (6) can be derived as equation (9) [10], 

[1 0 0]T
ABe 
                                    (9) 
 

and substituting equation (9) into equation (6) yields [18] 

 Ti i i
AB AB L

TS E R 


                                (10) 

  Ti i
AB AB ABL

E E e   
                             (11) 

 
 

 
 

2 2 2

2

cos cos cos

cos cos sin cos sin
cos sin cos cos

T

A B
Ti

AB A A B BL

A B

E

  

    
   

 
 

  
   

  

 

Equation (10) shows the sensitivity relationship between test statistics and the fault in 

satellite location resulting from ephemeris failure. When the Schwarz inequality is applied in 

equation (10), we can derive the sensitivity relation in the worst-case geometry condition. 

 Ti i i
AB AB L

TS E R


                                (12) 

 

This shows that the sensitivity increases when the local elevation angle and the azimuth 

angle are close to 0° and 90°, respectively. Accordingly, given these properties, this algorithm 

is sufficient for fault detection for rising satellites of low elevation angle. From a local 

azimuth perspective, various baseline vectors are required using multiple RS and baseline 

length should be extended to increase the satellite’s induced angle. This means that the 

algorithm above is applicable for wide-area implementations of GNSS such as Space-Based 

Augmentation System (SBAS) and Ground Regional Augmentation System (GRAS) rather 

than narrow-area implementations. 

 

2.3 Ephemeris Protection Level and MDE 

GNSS implementations conduct a two-step process to ensure navigation integrity. First, the 

Equation (10) shows the sensitivity relationship between 

test statistics and the fault in satellite location resulting from 

ephemeris failure. When the Schwarz inequality is applied 

in equation (10), we can derive the sensitivity relation in the 

worst-case geometry condition.

 
10 

The baseline unit vector of equation (6) can be derived as equation (9) [10], 

[1 0 0]T
ABe 
                                    (9) 
 

and substituting equation (9) into equation (6) yields [18] 

 Ti i i
AB AB L

TS E R 


                                (10) 

  Ti i
AB AB ABL

E E e   
                             (11) 

 
 

 
 

2 2 2

2

cos cos cos

cos cos sin cos sin
cos sin cos cos

T

A B
Ti

AB A A B BL

A B

E

  

    
   

 
 

  
   

  

 

Equation (10) shows the sensitivity relationship between test statistics and the fault in 

satellite location resulting from ephemeris failure. When the Schwarz inequality is applied in 

equation (10), we can derive the sensitivity relation in the worst-case geometry condition. 

 Ti i i
AB AB L

TS E R


                                (12) 

 

This shows that the sensitivity increases when the local elevation angle and the azimuth 

angle are close to 0° and 90°, respectively. Accordingly, given these properties, this algorithm 

is sufficient for fault detection for rising satellites of low elevation angle. From a local 

azimuth perspective, various baseline vectors are required using multiple RS and baseline 

length should be extended to increase the satellite’s induced angle. This means that the 

algorithm above is applicable for wide-area implementations of GNSS such as Space-Based 

Augmentation System (SBAS) and Ground Regional Augmentation System (GRAS) rather 

than narrow-area implementations. 

 

2.3 Ephemeris Protection Level and MDE 

GNSS implementations conduct a two-step process to ensure navigation integrity. First, the 

(12)

This shows that the sensitivity increases when the local 

elevation angle and the azimuth angle are close to 0° and 

90°, respectively. Accordingly, given these properties, this 

algorithm is sufficient for fault detection for rising satellites 

of low elevation angle. From a local azimuth perspective, 

various baseline vectors are required using multiple RS and 

baseline length should be extended to increase the satellite’s 

induced angle. This means that the algorithm above is 

applicable for wide-area implementations of GNSS such 

as Space-Based Augmentation System (SBAS) and Ground 

Regional Augmentation System (GRAS) rather than narrow-

area implementations.

2.3 Ephemeris Protection Level and MDE

GNSS implementations conduct a two-step process 

 
8 

 

,i f i i
A A Ae e e 
   ,  ,i f i i

B B Be e e 
                             (5) 

 ,i T i i
i

i

I e e R
e






  


 
  

 

 
 
Figure 2. Geometry of ephemeris fault condition. 

 

 

Substituting equation (5) into equation (2) yields equation (6).  
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ABe  : Unit baseline vector ( ABx ) 
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Equation (6) can be simplified in local coordinates that use the baseline vector as the x-axis. 

Figure (3) shows the local coordinates and the geometry of the satellite. 

Fig. 2. ��Geometry of ephemeris fault condition.
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Fig. 3. ��Local coordinates.
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to ensure navigation integrity. First, the information 

of faulty satellites, identified using fault detection 

algorithms, is broadcast to the user within a limited time; 

then, an airborne user computes the protection level 

corresponding to the available satellites’ geometry used 

to compute the navigation solution. The protection level 

is computed based on various hypotheses and compared 

with the allowable position error bound, known as 

the alert limit (AL), to check GNSS implementation 

availability [12][16].

In this section we derived the vertical PL (VPLHe), which 

estimates the impact of one satellite failure (undetected 

at a ground facility) on an airborne user’s position, and 

MDE, based on the proposed ephemeris fault detection 

algorithm. MDE is used to compute the P Value, broadcast 

as integrity parameters to the user together with the 

pseudorange correction (PRC). To derive a VPLHe, an 

estimated user’s conservative position error can be shown 

in equation (13) using the Cauchy-Schwarz inequality  

[12].
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When affection of nominal condition of test statistics is considered, the equation (13) is 
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3. Experiment and Results

In this section, we evaluate the proposed algorithm using 

real GPS data for multiple reference stations. First, sensitivity 

equation (Section 2.1), is evaluated with respect to geometry 

conditions (local elevation angle, local azimuth, baselines 

length), and then we compute the threshold based on test 

statistics. Finally, we check the applicability of algorithm 

using MDE and EPL in case of landing aircraft at Gimpo 

International Airport.

3.1 Sensitivity Evaluation Results

To evaluate the sensitivity of the proposed algorithm with 

respect to ephemeris failure, we compare the norm of the 

worst-case sensitivity vector with that of a similar algorithm 

based on short baseline vectors and range measurements. 

Using real GPS data, we present a simulation for verification 

of sensitivity properties.

The relevant algorithm for comparison uses a short 

baseline and carrier phase measurement. The reason for 

its selection is that its information (range measurement, 

baseline, broadcast ephemeris, etc.) for generation of test 

statistics is analogous to the proposed algorithm and its 

detection properties also depend on the geometry condition 

between the baseline vector and the satellites.

Figure 4 shows the norm of the sensitivity vector of the 

proposed algorithm and the comparison algorithm. It can be 

see that the sensitivity of both algorithms is affected by the 

geometry condition.

The distinct property is that the effect of the local elevation 

angle is different for the two algorithms. Both algorithms have 

a similar tendency at the local azimuth angle. However, the 

sensitivity of the proposed algorithm increases as elevation 

angle decreases, in contrast with the comparison algorithm’s 

tendency. As described, the purpose of these algorithms 

is ephemeris failure detection in the absence of a verified 

ephemeris. This case is frequent for the first rising satellite of 

the day. Thus, the proposed algorithm is better because of its 

high sensitivity for a rising satellite with a low elevation angle. 

From a baseline length perspective, the proposed algorithm 

has high sensitivity with respect to large induced angle 

resulting from baseline length. The comparison algorithm 

has a similar tendency with baseline length; however, it has 

a limit on baseline length because of the basic assumption 

that LOS vectors of two reference station about the target 

satellite are quasi-parallel.[8] This means that the proposed 

algorithm does not have to consider the baseline length 

limitation and is applicable to various GNSS augmentation 

systems: not only the local area system (GBAS) but also wide-

area systems (e.g., GRAS, SBAS). The various long baseline 

vectors, which can be implemented with the local azimuth 

and local elevation angle, are required to improve detection 

performance of the proposed algorithm. The geometry of 

various azimuth angles can be implemented by multiple 

RSs that are not on the same line. However, this is difficult 

with baseline vector geometry for various local elevations, 

especially when based on long baseline length. Fortunately, 

satellites at low elevation angles are more frequent than 

those with high elevation angles (close to 90°) over a 24-h 
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Figure 4. Magnitude of the sensitivity vector with respect to the geometry condition 
(The proposed algorithm (left) and the comparison algorithm (right)). 
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Table 2. Tendency of increasing sensitivity corresponding to geometry conditions.

 
15 

Table 2. Tendency of increasing sensitivity corresponding to geometry conditions. 
 
Geometry conditions Comparison algorithm Proposed algorithm 
Local elevation angle close to 90° close to 0° 
Local azimuth angle close to 90° close to 90° 
Baseline length Increase (limited) Increase 

 

The distinct property is that the effect of the local elevation angle is different for the two 

algorithms. Both algorithms have a similar tendency at the local azimuth angle. However, the 

sensitivity of the proposed algorithm increases as elevation angle decreases, in contrast with 

the comparison algorithm’s tendency. As described, the purpose of these algorithms is 
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however, it has a limit on baseline length because of the basic assumption that LOS vectors of 

two reference station about the target satellite are quasi-parallel.[8] This means that the 
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to various GNSS augmentation systems: not only the local area system (GBAS) but also 

wide-area systems (e.g., GRAS, SBAS). The various long baseline vectors, which can be 

implemented with the local azimuth and local elevation angle, are required to improve 

detection performance of the proposed algorithm. The geometry of various azimuth angles 

can be implemented by multiple RSs that are not on the same line. However, this is difficult 
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baseline length. Fortunately, satellites at low elevation angles are more frequent than those 

with high elevation angles (close to 90°) over a 24-h period. However, this is left to be 

considered in further work. 
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period. However, this is left to be considered in further work.

Next, we tried to verify the sensitivity equation in equation 

(12) for the proposed algorithm. As shown in Table 3, the 

various baseline vectors are composed with Suwon (SUWN), 

Nonsan (NONS), and Jeju (JEJU) from Seoul (SOUL) in 

Korea, and we use error-free range measurement to examine 

the influence of the geometry condition. A satellite position 

fault (1 km, XYZ) is imposed on all visible satellites for 24 h.

Figure 5 shows the mean and standard deviation of test 

statistics with local elevation angle. As expected, the test 

statistics show a decreasing tendency with respect to high 

elevation angle.

Figure 6 shows the mean and standard deviation of test 

statistics with local azimuth angle. As expected, the test 

statistics show an increasing tendency as close to 90° local 

azimuth angle in similar elevation angle.

Finally, long baseline length, which causes larger induced 

angle, can be an important factor for detection performance, 

as shown in both Figs. 5 and 6.

3.2 �Algorithm Realization and Availability Test using 
GPS Data 

In this section, we realized and evaluated the proposed 

algorithm using real GPS data of multiple RSs. The main 

items were evaluation of the correction result of the range 

measurement error. Then, we determined the threshold, 

MDE, and conducted availability testing based on the EPL 

at Gimpo International Airport with multiple baseline 

conditions in Korea.

As shown in Fig. 7, the multiple baseline conditions (6 

baselines) were deployed using four reference stations 

operated by the National Geographic Information Institute 
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Figure 5. Variation of test statistics in the ephemeris failure condition with respect to local 
elevation angle and baseline length: mean (left) and standard deviation (right). 
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Finally, long baseline length, which causes larger induced angle, can be an important factor 

for detection performance, as shown in both Figs. 5 and 6. 

 

3.2 Algorithm Realization and Availability Test using GPS Data  

In this section, we realized and evaluated the proposed algorithm using real GPS data of 

multiple RSs. The main items were evaluation of the correction result of the range 

measurement error. Then, we determined the threshold, MDE, and conducted availability 

testing based on the EPL at Gimpo International Airport with multiple baseline conditions in 

Korea. 

As shown in Fig. 7, the multiple baseline conditions (6 baselines) were deployed using four 

reference stations operated by the National Geographic Information Institute (NGII) in Korea. 

Prior to generating test statistics, we corrected the range measurement error sources, which 

include the ionosphere, troposphere, and satellite/receiver clock bias, as described in Section 

1. Fig. 8 shows the resulting range correction error at four reference stations of all visible 

satellites based on 24-h data. It can be seen that the ramifications of range error sources are 

reduced in all visible satellites. Statistical results (mean, standard deviation, and histogram) 

Fig. 6. ��Variation of test statistics in the ephemeris failure condition with respect to local azimuth angle and baseline length: in elevation angle 30-
40° (left) and in elevation angle 70-80° (right).
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Prior to generating test statistics, we corrected the range 

measurement error sources, which include the ionosphere, 

troposphere, and satellite/receiver clock bias, as described 

in Section 1. Fig. 8 shows the resulting range correction error 

at four reference stations of all visible satellites based on 

24-h data. It can be seen that the ramifications of range error 

sources are reduced in all visible satellites. Statistical results 

(mean, standard deviation, and histogram) are shown in 

Table 4.

To ensure reliability, many data samples are required 

for analysis in terms of statistics for determination of the 

threshold. In the present work, the mean and standard 

deviation of test statistics are computed using 1-week 

data received from 2014.9.1 to 2014.9.7 (sampling period 

30 s). The plot on the left hand side of Fig. 9 shows the test 

statistics mean (red lines with diamond markers) and 

standard deviation (blue lines with circular markers) with 

local elevation angle. A standard deviation model of test 

statistics is derived in equation (22). Shown in the plot on the 

right hand side of Fig. 9, the threshold with respect to local 

elevation angle is derived in equation (23), which uses the 

multiplier (KFFA) associated with the false alarm rate of the 

CAT-I requirement [12].

Table 4. Range mitigation error (mean and standard deviation).
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To ensure reliability, many data samples are required for analysis in terms of statistics for 

determination of the threshold. In the present work, the mean and standard deviation of test 

statistics are computed using 1-week data received from 2014.9.1 to 2014.9.7 (sampling 

period 30 s). The plot on the left hand side of Fig. 9 shows the test statistics mean (red lines 

with diamond markers) and standard deviation (blue lines with circular markers) with local 

elevation angle. A standard deviation model of test statistics is derived in equation (22). 

Shown in the plot on the right hand side of Fig. 9, the threshold with respect to local elevation 

angle is derived in equation (23), which uses the multiplier (KFFA) associated with the false 

alarm rate of the CAT-I requirement.[12] 
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Figure 9. Daily variation of test statistics and threshold with respect to local elevation angle. 
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Table 5. False alarm probability and multiplier according to the CAT-I requirement  

Requirement False Alarm Rate Multiplier (KFFA)
CAT-I 1.9 x 10-4 3.74

Table 6. Missed detection probability and multiplier according to the CAT-I requirement 

Requirement Probability of missed detection Multiplier (Kmd)

CAT-I 1.0 x 10-3 3.1
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To ensure reliability, many data samples are required for analysis in terms of statistics for 

determination of the threshold. In the present work, the mean and standard deviation of test 

statistics are computed using 1-week data received from 2014.9.1 to 2014.9.7 (sampling 

period 30 s). The plot on the left hand side of Fig. 9 shows the test statistics mean (red lines 

with diamond markers) and standard deviation (blue lines with circular markers) with local 

elevation angle. A standard deviation model of test statistics is derived in equation (22). 

Shown in the plot on the right hand side of Fig. 9, the threshold with respect to local elevation 

angle is derived in equation (23), which uses the multiplier (KFFA) associated with the false 

alarm rate of the CAT-I requirement.[12] 
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θ : Elevation angle (degrees)

Figure 10 shows an example of the test statistics and 

threshold on PRN 11 of the test period. In the nominal 

condition, we can see that the test statistic does not exceed 

the threshold, but does trigger a false alarm.

3.3 MDE and Availability Testing 

The MDE of all visible satellites (24 h) is computed with 

equation (3-4). The missed detection probability and 

multiplier associated with the CAT-I requirement, as shown 

in Table 6, are is used to compute the MDE [18].

The left hand side of Fig. 11 shows an example of the PRN 5 

MDE corresponding to six baselines. It is clear that the MDE 

of the proposed algorithm fluctuates with respect to time 

because of the variable worst-case sensitivity vector related 

to geometry of the baseline and the satellite.

Consequently, for detection performance the appropriate 

baseline is selected based on the least MDE value monitored 

among the various RS geometries in real time. The right 

hand side of Fig. 11 shows the least MDE value of all visible 

satellites and baseline conditions for a 24-h period.

However, the figure showed unexpected MDE 

divergence, to be investigated further. The given satellites 

(PRN 1, PRN 11, PRN 26, and PRN 27) are close to high-

elevation-angle status. A satellite at a high elevation angle 

degrades the sensitivity of the algorithm and leads to 

an increase in the MDE value. Once again, this satellite 

condition is not frequent for a 1 day (24-h) period, and this 

algorithm focuses on rising satellites with low elevation 

angles. However, to ensure system integrity, the GNSS 

augmentation system, which implements this algorithm, 

should also use additional ephemeris fault detection 

algorithms.

Next, we present the availability result based on the 

ephemeris protection level that uses the MDE value. The 

basic simulation condition considers an aircraft trying 

to land at Gimpo International Airport on runway 32R 

(RWY 32R), located at a CAT-I decision height (DH) of 

200 ft. The GPS constellation is based on 31 satellites. 

The reason for availability analysis at the DH is that the 

aircraft determines the use of the ground landing-aided 

facility at the DH (final location) associated with system 

requirements. The analysis period is 24 h, considering 

the repeatability of the GPS constellation (approximately 
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Figure 10. Test statistics of normal condition with threshold (PRN 11) 
 

Figure 10 shows an example of the test statistics and threshold on PRN 11 of the test 

period. In the nominal condition, we can see that the test statistic does not exceed the 

threshold, but does trigger a false alarm. 
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Table 6, are is used to compute the MDE [18]. 

 

Table 6. Missed detection probability and multiplier according to the CAT-I requirement 
 

Requirement Probability of missed 
detection Multiplier (Kmd) 

CAT-I 31.0 10  3.1

 

The left hand side of Fig. 11 shows an example of the PRN 5 MDE corresponding to six 

baselines. It is clear that the MDE of the proposed algorithm fluctuates with respect to time 

Fig. 10. ��Test statistics of normal condition with threshold (PRN 11)

Table 6. Missed detection probability and multiplier according to the CAT-I requirement 
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Table 5. False alarm probability and multiplier according to the CAT-I requirement  

Requirement False Alarm Rate Multiplier (KFFA)
CAT-I 1.9 x 10-4 3.74

Table 6. Missed detection probability and multiplier according to the CAT-I requirement 

Requirement Probability of missed detection Multiplier (Kmd)

CAT-I 1.0 x 10-3 3.1

 
21 

because of the variable worst-case sensitivity vector related to geometry of the baseline and 

the satellite. 

Consequently, for detection performance the appropriate baseline is selected based on the 

least MDE value monitored among the various RS geometries in real time. The right hand 

side of Fig. 11 shows the least MDE value of all visible satellites and baseline conditions for 

a 24-h period. 
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Figure 11. MDE according to baseline vectors (PRN 5) and minimum MDE result (24 h). 

 

However, the figure showed unexpected MDE divergence, to be investigated further. The 

given satellites (PRN 1, PRN 11, PRN 26, and PRN 27) are close to high-elevation-angle 

status. A satellite at a high elevation angle degrades the sensitivity of the algorithm and leads 

to an increase in the MDE value. Once again, this satellite condition is not frequent for a 

1-day (24-h) period, and this algorithm focuses on rising satellites with low elevation angles. 

However, to ensure system integrity, the GNSS augmentation system, which implements this 

algorithm, should also use additional ephemeris fault detection algorithms. 

Next, we present the availability result based on the ephemeris protection level that uses 

the MDE value. The basic simulation condition considers an aircraft trying to land at Gimpo 

International Airport on runway 32R (RWY 32R), located at a CAT-I decision height (DH) of 

200 ft. The GPS constellation is based on 31 satellites. The reason for availability analysis at 

Fig. 11. MDE according to baseline vectors (PRN 5) and minimum MDE result (24 h).
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11 h 58 s) and the rotation of the earth. This property is 

advantageous for shortening the analysis period. The 

availability analysis with EPL is conducted in comparison 

with the same algorithm used in the sensitivity analysis in 

Section 3.1 [9]. The P-value of the comparison algorithm, 

which is used to compute the EPL, is shown in equation 

(24) [12].
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the DH is that the aircraft determines the use of the ground landing-aided facility at the DH 

(final location) associated with system requirements. The analysis period is 24 h, considering 

the repeatability of the GPS constellation (approximately 11 h 58 s) and the rotation of the 

earth. This property is advantageous for shortening the analysis period. The availability 

analysis with EPL is conducted in comparison with the same algorithm used in the sensitivity 

analysis in Section 3.1 [9]. The P-value of the comparison algorithm, which is used to 
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  /FFA MDP K K b                            (24) 

  : Standard deviation of the test statistics (double differential carrier: 0.3 cm)  
b : Baseline length (200 m) 

 

where   is the noise level of the double difference carrier measurement, corresponding 

to an integrated multipath limiting antenna (IMLA) used for RS [8]. The value of b  

represents the baseline length between multiple RS antennas and is similar to the RS of 

Gimpo International Airport. 

The P-value variation over 24 h is shown in Fig. 12. It can be seen that the P-value of the 

proposed algorithm varies with time due to the geometry condition, whereas that of the 

comparison algorithm does not; additionally, the P-value magnitude is generally smaller for 

the proposed algorithm. As shown on the left side of Fig. 12, pronounced ramifications due to 

high-elevation-angle satellites are also observed in the P-value, as expected. Fortunately, it is 

still within the allowable value (CAT-I), established in ICAO Annex 10, for landing aircraft. 

[19]. 

(24)

σϕ : Standard deviation of the test statistics (double 

differential carrier: 0.3 cm) 

b : Baseline length (200 m)

where σϕ is the noise level of the double difference carrier 

measurement, corresponding to an integrated multipath 

limiting antenna (IMLA) used for RS [8]. The value of 

b represents the baseline length between multiple RS 

antennas and is similar to the RS of Gimpo International 

Airport.

The P-value variation over 24 h is shown in Fig. 12. It can 

be seen that the P-value of the proposed algorithm varies 

with time due to the geometry condition, whereas that of the 

comparison algorithm does not; additionally, the P-value 

magnitude is generally smaller for the proposed algorithm. 

As shown on the left side of Fig. 12, pronounced ramifications 

due to high-elevation-angle satellites are also observed in 

the P-value, as expected. Fortunately, it is still within the 

allowable value (CAT-I), established in ICAO Annex 10, for 

landing aircraft. [19].

The estimated aircraft position error due to the 

P-value, which represents ephemeris failure detection 

performance, is shown on the right side of Fig. 12. The 

result shown in Fig. 12 shows that position error according 

to P-Value is less than centimeter-scale because the effect 

of ephemeris failure decorrelation is small between the 

aircraft and the RS in the case of small displacement 

(752.5 m). However, if the displacement is larger than 

in this simulation condition, the proposed algorithm is 

more useful than the comparison algorithm because of 

the increasing of the decorrelation effect, as shown in 

equation (24).

The nominal error models due to airborne antenna 

multipath/noise (equation 25), ionosphere (equation 26), 

troposphere (equation 27), and RS receivers (equation 28) 

are applied to compute the EPL together with ephemeris 

failure-based position error.
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 Figure 12. P-Value (left) and estimated position error with respect to P-Value (right). 

 

 

The estimated aircraft position error due to the P-value, which represents ephemeris failure 

detection performance, is shown on the right side of Fig. 12. The result shown in Fig. 12 

shows that position error according to P-Value is less than centimeter-scale because the effect 

of ephemeris failure decorrelation is small between the aircraft and the RS in the case of 

small displacement (752.5 m). However, if the displacement is larger than in this simulation 

condition, the proposed algorithm is more useful than the comparison algorithm because of 

the increasing of the decorrelation effect, as shown in equation (24). 

The nominal error models due to airborne antenna multipath/noise (equation 25), 

ionosphere (equation 26), troposphere (equation 27), and RS receivers (equation 28) are 

applied to compute the EPL together with ephemeris failure-based position error. 
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the increasing of the decorrelation effect, as shown in equation (24). 
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applied to compute the EPL together with ephemeris failure-based position error. 
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The parameters of the given model are shown in Tables 7, 8, and 9. The airborne accuracy 

designator (AAD) and ground accuracy designator (GAD) are related to antenna performance 

index for the airborne station and the RS, respectively. [19] 
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Figure 13 shows the EPL result according to both algorithms. The results show that EPL 

will meet the availability requirement, called the alert limit (AL), established in CAT-I (10 m) 

(28)

The parameters of the given model are shown in Tables 

7, 8, and 9. The airborne accuracy designator (AAD) and 

ground accuracy designator (GAD) are related to antenna 

performance index for the airborne station and the RS, 

respectively. [19]

Figure 13 shows the EPL result according to both 

algorithms. The results show that EPL will meet the availability 

requirement, called the alert limit (AL), established in CAT-I 

(10 m) and CAT-II/III (4.4 m). The effect of high elevation 

angle on the proposed algorithm is expected to increase 

the EPL (red line), but it does not threaten to exceed the 

AL (which would result in a loss of availability) because of 

considerable satellite geometry.
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Despite the explicit distinctions between the two 

algorithms, appreciable differences in EPL are not observed 

in Fig. 13. If the ephemeris failure decorrelation due to 

aircraft-RS displacement increases (as in a wide-area 

implementation), then the EPL based on the proposed 

algorithm is more relatively valuable for system availability 

than that of the comparison algorithm. These findings 

suggest that the proposed algorithm will be suitable to not 

only GBAS, but also SBAS and GRAS, which are implemented 

for wide-area applications.

4. Conclusions and Future Work

GNSS orbit ephemeris is broadcast to users for computing 

the position of a navigation satellite. The orbit ephemeris is 

estimated by the ground facility, which is the operational 

control segment (OCS) of the GPS, and affects the accuracy 

of the user’s navigation solution. Currently, estimated 

performance tends to improve when using the differential 

GNSS (DGNSS) implementation, so ramifications of 

ephemeris error to the user are very small in limiting cases. 

However, the integrity issue has been magnified recently 

along with user accuracy requirements. In particular, 

integrity can determine system availability and any other 

requirements faced within the aviation community. 

Ephemeris constitutes a threat to integrity of the GNSS; thus, 

we propose an ephemeris failure detection algorithm.

Basically, the proposed algorithm uses trigonometry 

(the First Cosine Law) to estimate the baseline length of 

reference station antennas and compute the residual with 

true baseline length surveyed precisely. If this residual (from 

test statistics) exceeds a threshold value, then ephemeris 

failure is detected.

For detailed algorithm analysis, we introduce the 

generation of test statistics and a threshold value. An 

Table 7. Error model parameters in the normal condition.
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Figure 13. EPL result at Gimpo International Airport (24 h). 
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analysis is conducted on the test statistics’ sensitivity vector, 

corresponding to ephemeris failure, and on an availability 

test, based on the ephemeris protection level in Korea. The 

important feature is that the performance index (sensitivity 

and MDE) depends on geometric parameters including 

local elevation angle, local azimuth angle, and baseline 

length between the satellite and the baseline vectors. 

Consequently, this algorithm is more efficient for use with 

multiple reference stations that can generate various long 

baseline vectors, such as GRAS and SBAS. The availability 

test conducted for Gimpo International Airport in Korea 

was based on the EPL of a landing aircraft at CAT-I decision 

height. In some cases, concern is warranted by an increase 

in EPL (which threatens availability) because of increased 

MDE. However, this effect is still small enough to meet the 

stringent requirements (CAT-I and CAT-II/III) for precision 

approaches and landing.

In future work, we will address the algorithm’s weakness 

at high elevation angles and validate it using numerous 

international GNSS reference data.
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