• Title/Summary/Keyword: Ground surface vibration

Search Result 106, Processing Time 0.021 seconds

Assessment of the Anchor Head System Embedded in the Ground Surface (지표면에 근입한 앵커두부처리 시스템의 적용성 평가)

  • Min, Kyoung-Nam;Bae, Woo-Seok;Ahn, Kwang-Kuk;Jeong, Ku-Sic
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Anchor heads a recommonly exposed to surface weathering processes that cause physical damage by vibration and external forces. This study presents a new method of anchor-head installation that uses near-surface embedding based on analyses of concrete block failure. ABAQUS 3D numerical modeling performed to compare this method with the standard technique and to analyze the distribution of displacement and the stress pattern. In addition, application of the method to a real-world case was tested by in-situ measurements. The results show a maximum vertical stress of 9.73 MPa and vertical displacement of 1.34 mm. Field tests indicated that displacement of a concrete block was 3 to 4 times greater than that of an embedded bearing plate.

Behavior Case Study of Temporary Structures during Underground Extension Work by Field Measurement (현장계측을 통한 지하증축공사 중 가설구조물의 거동 사례연구)

  • Kim, Uiseok;Min, Byungchan;Kang, Minkyu;Kim, Dongkwan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.5-13
    • /
    • 2020
  • During the construction of underground space expansion of old facilities, it is necessary to secure temporary residence space for existing residents as well as noise and vibration issues during construction, and in the case of commercial, industrial, and social use, damage is expected from suspension of the use of facilities. There is a need for a technology that minimizes noise and vibration during underground expansion, enabling the use of existing facilities even during construction. In this study, a practical underground extension model is proposed by analyzing the behavior of the temporary structure and the surrounding ground as a result of measurement at each construction stage for a actual construction site. In order to solve the problems that occurred during construction, the basement slabs were placed in advance after the initial excavation. The measurement results (building inclinometer, crack measurement system, structure inclinometer and surface settlement meter) at the site were reviewed to analyze the behavior of the temporary structure and surrounding ground. As a result, it was confirmed that the inclinometer of the building and the structural inclinometer showed a tendency that the displacement after the slab line was placed was reduced or converged. The placement of basement slabs during underground extension not only relived the noise and vibration problems during construction, but also secured the stability of structures.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed (고속철도 노반지지조건에 따른 임계속도효과의 동적응답)

  • Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Estimation of Rail Irregularities by using Acceleration values (가속도 값을 이용한 궤도 불규칙도 검측)

  • Kim, Young-Mo;Park, Chan-Kyoung;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2173-2178
    • /
    • 2008
  • Railroad is the major factor of vibration source in railway vehicles, and it must carefully maintained the original condition to secure the safety and good ride comfort of passenger. Measuring the condition of rail irregularities such as surface, alignment, gauge, twist and cant etc is required to maintain the good performance of railroad. Currently, the various rail irregularity measurement systems(EM120, ROGER1000K and the Total Rail Irregularity Measurement system of Korea High Speed Train) are operated in Korea to estimate the rail irregularity. It is hard to verify the correlation of one rail irregularity data of a measurement system with the other, because they have been adopted different rail irregularity estimation methods. The best method securing the reliability of the irregularity data is the direct confirmation on the ground where the measurement system had detected as a fault section, but it is impossible to apply all sections simultaneously due to limitation of time, labor, cost and equipments. There is a method to secure the reliability of the data by using acceleration values. Rail irregularities, the major factor of vibration in railway vehicle, are transmitted to the vehicle acceleration through masses, springs, dampers and joints as the system dynamic formation. In this study, Transition Function has been adopted by using the rail irregularity and the acceleration value regarding as input & output parameters respectively. It has been verified by comparing the analyzed results with real measured irregularity data from the Total Rail Irregularity Measurement system of Korea High Speed Train. Also various methods has been accomplished to verify the correlation between rail irregularities and acceleration values.

  • PDF

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

Highspeed Train : Sound Power and Noise Propagation Characteristics (고속철도의 소음 특성과 전파현상)

  • 김정태;은희준
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.349-355
    • /
    • 1996
  • For a rail traffic noise, a typical source has a length of 200m - 400m so that the noise pollution areas have been located in the transition regions where the sound level drops between 3dB/dd and 6dB/dd. Therefore, in this region, parameters such as a horizontal distance from the track, the geometry of the ground surface, the environmental effect, and the boundary impedance condition play import roles, especially in our nation's situation. In this study, modelling techniques for the finite length of noise source have been investigated in order to evaluate the rail traffic noise level. Then. noise correction value .${\Delta}$SPL for various location in the track region is represented by the non-dimensionalized horizontal and parallel distance from the track. As an application, a high speed train is examined. Beas on the noise data measured for a Eurostar in France, the sound power value per unit length $H_1$is calcuated. It turns out that$H_1$is 109 dB. Overall sound power from the highspeed train to be serviced in our country is expected to 135 dBA.

  • PDF

Luminescent Characteristics and Synthesis of Sm3+-Doped CaWO4 Phosphors (CaWO4:Sm3+ 형광체의 합성과 발광특성)

  • Ryu, Jong-Hang;Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.339-343
    • /
    • 2014
  • $CaWO_4:Sm_x$(x = 0, 0.5, 1.0, 1.5, 2.0 mol%) white phosphors with different concentrations of $Sm^{3+}$ ions were synthesized using the hydrothermal method. The crystal structure, surface, and optical properties of the $CaWO_4:Sm_x$ phosphors were investigated using X-ray diffraction(XRD), field-emission scanning electron microscopy(FE-SEM), photoluminescence(PL) and photoluminescence excitation(PLE). From the XRD results, the crystal structure of the $CaWO_4:Sm$ phosphors was found to be tetragonal. The $CaWO_4:Sm$ phosphors became more cohesive with increasing $Sm^{3+}$-ion concentration. The photoluminescence excitation(PLE) peak of the phosphors, at around 250 nm, was ascribed to the transition from the 1A1 ground-state to the high-vibration level of 1T2 in the $WO{_4}^{2-}$ complex. The maximum emission spectra of the phosphors were observed when the $Sm^{3+}$ concentration was 0.5 mol%. The luminescence intensity of the $CaWO_4$ phosphors was decreased for $Sm^{3+}$ concentrations greater than 0.5 mol%.

Numerical and random simulation procedure for preliminary local site characterization and site factor assessing

  • Beneldjouzi, Mohamed;Laouami, Nasser;Slimani, Abdennasser
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • Seismic analysis of local site conditions is fundamental for a reliable site seismic hazard assessment. It plays a major role in mitigation of seismic damage potential through the prediction of surface ground motion in terms of amplitude, frequency content and duration. Such analysis requires the determination of the transfer function, which is a simple tool for characterizing a soil profile by estimating its vibration frequencies and its amplification potential. In this study, numerical simulations are carried out and are then combined with a statistical study to allow the characterization of design sites classified by the Algerian Building Seismic Code (RPA99, ver 2003), by average transfer functions. The mean transfer functions are thereafter used to compute RPA99 average site factors. In this regard, coming up seismic fields are simulated based on Power Spectral Density Functions (PSDF) defined at the rock basement. Results are also used to compute average site factor where, actual and synthetic time histories are introduced. In absence of measurement data, it is found that the proposed approach can be used for a better soil characterization.