• Title/Summary/Keyword: Ground stress

Search Result 1,096, Processing Time 0.027 seconds

Analysis and Design of Soft Ground Tunnels Subject to Steady-State Groundwater Flow (정상류 조건하의 토사터널의 해석 및 설계)

  • Lee, In-Mo;Nam, Seok-Woo;Lee, Myung-Jae
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-56
    • /
    • 1994
  • Under the groundwater level, the tunnel face is affected by the seepage force and the groundwater flow may cause a trouble to the tunnel support systems. The appropriate methods of analysis and design in the tunnel face and the lining, considering groundwater flow according to tunnel drainage condition are presented in this thesis. First, the effect of seepage on the stability of tunnel face was studied. Seepage force was estimated by the 3-D finite element analysis and the stability of tunnel face was checked by analytical method. Furthermore, using the finite difference method the stress and displacement on the face were computed for either case, where the seepage force is or is not considered, and the effect of seepage on the tunnel face stability was evaluated. Second, the effect of seepage force on the tunnel lining when construction is finished and steady state seepage flow occurs was studied and a design methodology considering seepage effect was made. Consequently, in case where the groundwater level remains almost unchanged and the steady state groundwater flow occurs, the proper countermeasures for face staility are required according to the condition of groundwater flow. Moreover, the tunnel lining should be designed and constructed considering the seepage force occuring by the groundwater flow toward the tunnel linings.

  • PDF

Stability Analysis Techniques of Bracing Structure in the Hard Clay Ground According to the Variation of the Groundwater Level at the Trench Excavation (경질점성토 지반에서 Trench 굴착시 지하수위 변동에 따른 가설구조체 안정해석 기법)

  • Heo, Chang-Hwan;Seo, Sung-Tag;Kim, Hee-Duck;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.99-110
    • /
    • 2003
  • In this study, lightening material weight and normalizing structure of preventing system of landslide soil-rock in trench excavation was tried with focusing in safety construction availability and workability. In other words, risk estimate, safety management method investigation, applicability of bracing material and mechanical stability of bracing structure was studied. From these result, structural stability and structural analysis of light weight bracing structure was carried out with common structural analysis program, for examining movement mechanism of bracing structure and normalization of standard. The result are summarized as following. (1) Mechanical ability of bracing members and soil pressure parameter acting to member for ensuring mechanical propriety of bracing structural and useful of new material considering soil mechanics boundary were proposed. Also theory and method of analysis of bracing structural were proposed. (2) As a result of the structure analysis of geographical profile for light pannel used FRP as hard clay mechanical characteristics(bending moment, shear force, axial force) of panel were changed according to groundwater level and it is proved that the result of mechanical analysis is within allowable stress. Thus, light pannel is available for bracing structure in trench excavation.

Characteristics of Elastic Waves in Sand-Silt Mixtures due to Freezing (동결에 따른 모래-실트 혼합토의 탄성파 특성)

  • Park, Junghee;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The water in surface of the earth is frozen under freezing point. The freezing phenomenon, which causes the volume change of soils, affects on the behavior of soils and causes the significant damage on the geotechnical structures. The purpose of this study is to investigate the characteristics of elastic waves in sand-silt mixtures using small size freezing cells, which reflect the frozen ground condition due to temperature change. Experiments are carried out in a nylon cell designed to freeze soils from top to bottom. Bender elements and piezo disk elements are used as the shear and compressional wave transducers. Three pairs of bender elements and piezo disk elements are placed on three locations along the depth. The specimen, which is prepared by mixing sand and silt, is frozen in the refrigerator. The temperature of soils changes from $20^{\circ}C$ to $-10^{\circ}C$. The velocities, resonant frequencies and amplitudes of the shear and compressional waves are continuously measured. Experimental results show that the shear and compressional wave velocities and resonant frequencies increase dramatically near the freezing points. The amplitudes of shear and compressional waves show the different tendency. The dominant factors that affect on the shear wave velocity change from the effective stress to the ice bonding due to freezing. This study provides basic information about the characteristics of elastic waves due to the soil freezing.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.

The Analysis of Liquefaction Evaluation in Ground Using Artificial Neural Network (인공신경망을 이용한 지반의 액상화 가능성 판별)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.37-42
    • /
    • 2002
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this paper a liquefaction potential was estimated by using a back propagation neural network model applicated to cyclic triaxial test data, soil parameters and site investigation data. Training and testing of the network were based on a database of 43 cyclic triaxial test data from 00 sites. The neural networks are trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterns were minimized. This generally occurred after about 15,000 cycles of training. The accuracy from 72% to 98% was shown for the model equipped with two hidden layers and ten input variables. Important effective input variables have been identified as the NOC,$D_10$ and (N$_1$)$_60$. The study showed that the neural network model predicted a CSR(Cyclic shear stress Ratio) of silty-sand reasonably well. Analyzed results indicate that the neural-network model is more reliable than simplified method using N value of SPT.

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.

Functional Evaluation after Modified Brostrom Procedure with Suture Bridge Technique for Chronic Ankle Instability in Athletes (운동선수의 만성 발목관절 불안정성에서 교량형 봉합술을 이용한 변형 Brostrom 술식 후의 기능평가)

  • Park, Ji-Kang;Park, Kyoung-Jin;Cho, Byung-Ki;Im, Chae-Wook
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.108-114
    • /
    • 2014
  • Purpose: Ligament reattachment technique using a suture anchor appears to show satisfactory functional outcomes and mechanical stability compared with conventional bone tunnel technique. This study was prospectively conducted in order to evaluate functional outcomes of modified Brostrom procedures using the suture bridge technique for chronic ankle instability in athletes. Materials and Methods: Twenty eight athletes under 30 years of age were followed for more than two years after undergoing the modified Brostrom procedure using the suture bridge technique. Functional evaluation consisted of the foot and ankle outcome score (FAOS), foot and ankle ability measure (FAAM) score. Range of motion and time to return to exercise were evaluated using a periodic questionnaire. Talar tilt angle and anterior talar translation were measured through stress radiographs for evaluation of mechanical stability. Results: FAOS improved significantly from preoperative mean 59.4 points to 91.4 points (p<0.001). Daily living and sport activity scores of FAAM improved significantly from preoperative mean 50.5, 32.5 points to 94.8, 87.3 points, respectively (p<0.001). Talar tilt angle and anterior talar translation improved significantly from preoperative mean $16.8^{\circ}$, 13.5 mm to $4.2^{\circ}$, 4.1 mm at final follow-up (p<0.001). Times to return to exercise were as follows: mean 10.2 weeks in jogging, 15.4 weeks in spurt running, 13.1 weeks in jumping, 11.5 weeks in walking on uneven ground, 9.1 weeks in standing on one leg, 7.2 weeks in tip-toeing gait, 8.4 weeks in squatting, and 10.6 weeks in descending stairs. Conclusion: Modified Brostrom procedure using the suture bridge technique showed satisfactory functional outcomes for chronic ankle instability in athletes. Optimal indication and cost-effectiveness of the suture bridge technique will be studied in the future.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Study on Relationship between Meridian Muscles and Modern Manual Therapy centered on Positional Release Therapy and Muscle Energy Techniques (자세이완기법과 근에너지기법을 중심으로 한 경근(經筋)과 현대 도수치료술의 상관성 연구)

  • Cha, Sang Ju;Im, Chae-Gwang;Kim, Kwang Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.630-640
    • /
    • 2012
  • Recently, the range of meridian muscle has expanded to muscular membranes, tendons and sinews as well as muscles, comprehending the modern manual therapy and its theories. So, in this study, the movement of body is explained through the assignment of meridian muscles into 3 Yins and 3 Yangs, and the modern manual therapy is understood with body's movement principles rather than with simple muscular movements. For this, the ground that the meridian muscles can expand to muscular membranes, tendons and sinews is researched in newest papers and studies rather than in the conventional studies that have analyzed the meridian muscles just in anatomic viewpoints. And, to find out how it can be applied to the actual clinic, its relationship with modern manual therapies such as Positional Release Therapy and Muscle Energy Techniques which are in the spotlight lately is also researched, getting the following results: Modern manual therapy is to keep the mutual balance of Yin-Yang meridian muscles after all and secure the stability of body to relieve the pains due to the stagnation of energy and blood. In the main body, they can be allotted into the opening of Great Yang/Great Yin, the closing of Bright Yang(陽明)/Small Yin, and the pivoting of Small Yang/Growing Yin (厥陰). The bending and stretching of meridian muscles as well as the movement of body can be explained according to the principle of opening, closing and pivoting. When the body is divided into 3 Yins and 3 Yangs, the viewpoint of Yin-Yang-Inside-Outside can be applied to the protagonist and antagonist muscles, giving a theoretic basis to the modern manual therapy. In the process to understand Positional Release Therapy and Muscle Energy Techniques in the viewpoint of Meridian Muscle, it turned out that the meridian muscle theory of Oriental Medicine which used to be known only in documents can well explain the movement mechanism of human body. The stress reaction through the reciprocal inhibition in Positional Release Therapy and Muscle Energy Techniques can also be understood with Yin-Yang-Inside-Outside.

Engineering Geological Characteristics of volcanic rocks of the Northwestern Cheju Island, Korea (제주도 북서부 지역 화산암체의 지질공학 특성)

  • 김영기;최옥곤
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 1991
  • The geology of the northwestern Cheju Island consist of Pleistocene to Holocene volcanic rocks which could be devided into basalt layers, the Sungsan Formation composed mainly of volcaniclastic debris exposed along the shoreline, and more than 30 cinder cones. Columnar joints and vesicles are dominant in the basalts of the Pyeosunri and the Sihungri basalt Formations. Volcaniclast and clay layers are intercalated in basaltic layers. When volcaniclast of the interlayers would be swept away by ground water and some caves of channel shape would be formaed. Overlying lavas cracked by columnar joints could be easily destroyed, collapsed and/or sunk. Geomechananical nature of the rocks such as strength may be controlled by the vesicularity(size, shape, and orientation of the vesicles) of the rocks. On the basis of vesicularity as a factor of strength, the effective strength ratio(Ke) could be calculated as Ke=0.3-0.72, in which the smaller Ke value reflects the lower in internal stress. In the studied area, the strength of the rocks tends to decrease as increasing in altitude of provenance of the rocks. The rocks in the area show relatively low values in angle of failure strength($\phi$) ranging from 10$^{\circ}$ to 30$^{\circ}$. In conclnsion, the rocks in question, majority of which the critical value exceeds 0.33, belong to the unstable rocks in the aspect of engineering geology.

  • PDF