DOI QR코드

DOI QR Code

Physiological and Biochemical Responses of Sedum kamtschaticum and Hosta longipes to Ozone Stress

기린초와 비비추의 오존에 대한 생리·생화학적 반응

  • Cheng, Hyo Cheng (Department of Environmental Horticulture, The University of Seoul) ;
  • Woo, Su Young (Department of Environmental Horticulture, The University of Seoul) ;
  • Lee, Seong Han (Department of Environmental Horticulture, The University of Seoul) ;
  • Kwak, Myeong Ja (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Kyeong Nam (Department of Environmental Horticulture, The University of Seoul)
  • 정효정 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과) ;
  • 이성한 (서울시립대학교 환경원예학과) ;
  • 곽명자 (서울시립대학교 환경원예학과) ;
  • 김경남 (서울시립대학교 환경원예학과)
  • Received : 2012.01.02
  • Accepted : 2012.09.26
  • Published : 2013.02.28

Abstract

In this study, the resistance to ozone and characteristics of ozone-induced damage were investigated on the perennial ground cover plant species. Sedum kamtschaticum and Hosta longipes were exposed to $200{\mu}g{\cdot}kg^{-1}$ ozone for 8 hours per day (from 08:00 to 16:00) in the naturally irradiated phytotron. The extent of ozone-induced damage was measured through the analysis of physiological parameters, such as water use efficiency (WUE), chlorophyll content (Chl. a, Chl. b, Chl. a + b, and Chl. a/b ratio), carotenoid contents, and the induction of reactive oxygen species (ROS). Ozone exposure significantly reduced the daytime WUE in both species. The contents of chlorophyll and carotenoid were also decreased and ROS, such as hydrogen peroxide ($H_2O_2$) and superoxide radical ($O_2{^-}$) were accumulated after ozone exposure. The above results of this study suggested that S. kamtschaticum is more resistant to atmospheric ozone than Hosta longipes. Considering its fast responses to ozone, it was also assumed that Hosta longipes can be used as an indicator plant of an increase in atmospheric ozone concentration.

본 연구에서는 오존에 대한 다년생 지피식물의 내성과 피해 특징을 알아보고자 하였다. 이를 위해 도심 녹화 수종으로 많이 이용되는 지피식물인 기린초(Sedum kamtschaticum)와 비비추(Hosta longipes)를 대상으로 환경조절형 자연광 노출상에서 $200{\mu}g{\cdot}kg^{-1}$의 오존을 하루 8시간씩(오전 8시-오후 4시) 처리하였다. 초종간 피해 정도는 생리활성 분석[수분이용효율(water use efficiency), 엽록소(chlorophyll) 및 카로티노이드(carotenoid) 함량]과 활성산소종 발생분석을 통해 조사하였다. 오존처리는 기린초와 비비추 모두에서 낮 동안의 수분이용효율을 현저하게 감소시키는 것으로 조사되었다. 엽록소 함량과 카로티노이드 함량 역시 두 수종 모두 오존처리에 따라 감소되었으며, hydrogen peroxide($H_2O_2$)와 superoxide radical($O_2{^-}$)과 같은 활성산소종의 축적이 확인되었다. 이와 같은 결과들을 토대로 기린초가 비비추에 비해 대기 중 오존에 대한 저항성이 높은 것으로 보이며, 오존에 대한 반응이 빠른 초종인 비비추의 경우 대기 중 오존 농도증가에 대한 지표식물로도 활용할 수 있을 것으로 생각된다.

Keywords

References

  1. Allan, A.C. and R. Fluhr. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572. https://doi.org/10.1105/tpc.9.9.1559
  2. Al-Amoudi, A., J. Dubochet, and D. Studer. 2002. Amorphous solid water produced by cryosectioning of crystalline ice at 113K. J. Microsc. 207:146-153. https://doi.org/10.1046/j.1365-2818.2002.01051.x
  3. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15. https://doi.org/10.1104/pp.24.1.1
  4. Ashmore, M.R. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28:949-964. https://doi.org/10.1111/j.1365-3040.2005.01341.x
  5. Binkley, D., Y.W. Son, and Z.S. Kim. 1994. Impacts of air pollution on forests: A summary of current situations. J. Kor. For. Soc. 83:229-238.
  6. Blank, L.W., H.D. Payer, T. Pfirrmann, and K.E. Rehfuss. 1990. Effects of ozone, acid mist and soil characteristics on clonal Norway spruce-overall results and conclusions of the joint 14 month tree exposure experiment in closed chambers. Environ. Pollut. 64:385-395. https://doi.org/10.1016/0269-7491(90)90060-P
  7. Byvoet, P., J.U. Balis, S.A. Shelley, M.R. Montgomery, and M.J. Barber. 1995. Detection of hydroxyl radicals upon interaction of ozone with aqueous media or extracellular surfactant: the role of trace iron. Arch. Biochem. Biophysic. 38:464-469.
  8. Cheng, H.C., S.Y. Woo, S.H. Lee, and S.G. Back. 2010. Photosynthesis, antioxidant enzyme and anatomical difference of Sedum kamtschaticum and Hosta longipes to ozone. Kor. J. Hort. Sci. Technol. 28:394-402.
  9. Han, S.S., D.S. Jeon, and J.S. Sim. 2005. Effects of light, temperature, water changes on physiological responses of Kalopanax pictus leaves (II). J. For. Sci. 21:92-97.
  10. Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ. 18:605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  11. Inze, D. and M.V. Montagu. 1995. Oxidative stress in plants. Plant Biotechnol. 6:153-158.
  12. Je, S.M., S.G. Son, S.Y. Woo, K.O. Byun, and C.S. Kim. 2006. Photosynthesis and chlorophyll contents of Chloranthus glaber under different shading treatments. Kor. J. Agr. For. Meteorol. 8:54-60.
  13. Kang, S.J. 2008. Response oh monodehydroascorbate reductase (MDHAR) in lettuce (Lactuca sativa L.) leaves subjected to water deficit stress. J. Bio. Environ. Cont. 17:273-282.
  14. Kim, J.H. and C.H. Lee. 2005. In vivo deleterious effects specific to reactive oxygen species on photosystem I and II after photo-oxidative treatments of rice (Oryza sativa L.) leaves. Plant Sci. 168:1115-1125. https://doi.org/10.1016/j.plantsci.2004.12.012
  15. Kim, P.G., K.Y. Lee, S.D. Hur, S.H. Kim, and E.J. Lee. 2003. Effects of shading treatment on photosynthetic activity of Acanthopanax senticosus. Kor. J. Ecol. 26:321-326.
  16. Kim, S.T. 2011. Estimating ozone sensitivity coefficients to NOX and VOC emissions using BFM and HDDM for a 2007 June episode. J. Environ. Sci. 20:1465-1481.
  17. Kim, Y.R., I.H. Yoon, and H.J. Kim. 2001. Synoptic weather patterns and variation of ozone concentrations association with high ozone days at five major cities in Korea. J. Kor. Environ. Sci. Soc. 10:437-444.
  18. Kozlowski, T.T. and S.G. Pallardy. 1997. Physiology of woody plants. Academic Press, New York.
  19. Knudson, L.L., T.W. Tibbitts, and G.E. Edwards. 1977. Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol. 60:606-608. https://doi.org/10.1104/pp.60.4.606
  20. Langebartels, C., H. Wohlgemuth, S. Kschieschan, S. Grun, and H. Sandermann. 2002. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol. Biochem. 40:567-575. https://doi.org/10.1016/S0981-9428(02)01416-X
  21. Lee, E.H., E.J. Cho, M.Y. Park, D.W. Kim, and S.W. Jang. 2007. Selecting plants for the extensive rooftop greening based on herbal plants. J. Kor. Environ. Res. Reveg. Tech. 10:84-96.
  22. Lee, J.C., C.S. Kim, S.H. Han, and P.G. Kim. 2004. Stomatal and photosynthetic responses of Betula species exposed to ozone. Kor. J. Agr. For. Meteorol. 6:11-17.
  23. Lee, J.C., C.Y. Oh, S.H. Han, and P.G. Kim. 2005. Changes on photosynthesis and SOD activity in Platanus orientalis and Liriodendron tulipifera according to ozone exposing period. Kor. J. Agr. For. Meteorol. 7:156-163.
  24. Lee, J.C., S.H. Han, S.S. Jang, H.J. Cho, and Y.Y. Kim. 2002. Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Kor. J. Agr. For. Meteorol. 4:72-79.
  25. Lee, J.C., S.H. Han, K.W. Kwon, S.Y. Woo, and J.H. Choi. 2003. Changes of photosynthetic pigment contents and SOD activity in the leaves of four tree species exposed to $SO_{2}$. Kor. J. Agr. For. Meteorol. 5:18-23.
  26. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  27. Lincoln, T. and Z. Eduardo. 2006. Plant physiology. 4th ed. Life Science Publishing Co., USA.
  28. Lim, J.H., S.Y. Woo, M.J. Kwon, J.H. Chun, and J.H. Shin. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fire in Mt. Halla. J. Kor. For. Soc. 95:705-710.
  29. Madhoolika, A., P.K. Nandi, and D.N. Rao. 1982. Effect of ozone and sulphur dioxide pollutants separately and in mixture on chlorophyll and carotenoid pigments of Oryza sativa. Water Air Soil Pollution 18:449-454. https://doi.org/10.1007/BF02426052
  30. Mikkelsen, T.N. and H.S. Heide-Jorgensen. 1996. Acceleration of leaf senescence in Fagus sylvatica L. by low levels of tropospheric ozone demonstrated by leaf colour, chlorophyll fluorescence and chloroplast ultrastructure. Trees 10:145-156.
  31. Oh, C.Y., S.H. Han, Y.Y. Kim, and J.C. Lee. 2005. Change of drought tolerance and photosynthetic characteristics of Populus davidiana dode according to PEG concentration. Kor. J. Agr. For. Meteorol. 7:296-302.
  32. Oh, H.S. and Y.S. Kim. 1999. Characteristics of surface and synoptic meteorology during high-ozone episodes in the greater Seoul area. J. Kor. Soc. Atmos. Environ. 15:441-455.
  33. Park, E.H., J.K. Kim, J.C. Lee, and S.H. Han. 2002. Photosynthetic pigment concentrations and change of SOD activities on liana, Equisetum Arvense and Artemisia Princeps exposure to ozone. Kor. J. Agr. For. Meteorol. 4:159-163.
  34. Paakkonen, E., M.S. Gunthardt-Goerg, and T. Holopainen. 1998. Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Ann. Bot. 82:49-59. https://doi.org/10.1006/anbo.1998.0656
  35. Pleijel, H., A. Berglen Eriksen, H. Danielsson, N. Bondesson, and G. Sellden. 2006. Differential ozone sensitivity in an old and a modern Swedish wheat cultivar-grain yield and quality, leaf chlorophyll and stomatal conductance. Environ. Expt. Bot. 56:63-71. https://doi.org/10.1016/j.envexpbot.2005.01.004
  36. Saitanis, C.J., A.N. Riga-Karandinos, and M.G. Karandinos. 2001. Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere 42:945-953. https://doi.org/10.1016/S0045-6535(00)00158-2
  37. Schraudner, M., W. Moeder, C. Wiese, W.V. Camp, D. Inze, C. Langebartels, and H. Sandermann, Jr. 1998. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J. 16:235-245. https://doi.org/10.1046/j.1365-313x.1998.00294.x
  38. Shi, L., J. Bielawski, J. Mu, H. Dong, C. Teng, J. Zhang, X. Yang, N. Tomishige, K. Hanada, Y. Hannun, and J. Zuo. 2007. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 17:1030-1040. https://doi.org/10.1038/cr.2007.100
  39. Wohlgemuth, H., K. Mittelstrass, S. Kschieschan, J. Bender, H. J. Weogel, K. Overmyer, J. Kangasjarvi, H. Sandermann, and C. Langebartels. 2002. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ. 25:717-726. https://doi.org/10.1046/j.1365-3040.2002.00859.x
  40. Woo, S.Y., S.H. Lee, K.W. Kwon, and J.C. Lee. 2004a. Chlorophyll contents and glutathione reductase activity of Ailanthus altissima, Liriodendron tulipifera and Platanus occidentails seedling to the ozone exposure. J. Kor. For. Soc. 93:423-427.
  41. Woo, S.Y., S.H. Lee, K.W. Kwon, J.C. Lee, and J.H. Choi. 2004b. Growth, photosynthesis, and ascorbate peroxidase activity of several species to the ozone exposure. J. Kor. For. Soc. 93:409-414.
  42. Woo, S.Y., S.H. Lee, and D.S. Lee. 2004c. Air pollution effects on the photosynthesis and chlorophyll contents of street trees in Seoul. Kor. J. Agr. For. Meteorol. 6:24-29.
  43. Yaeno, T., O. Matsuda, and K. Iba. 2004. Role of chloroplast trienoic fatty acids in plant disease defense responses. Plant J. 40:931-941. https://doi.org/10.1111/j.1365-313X.2004.02260.x

Cited by

  1. 주요 가로수 묘목의 오존노출에 따른 대기오염내성지수 비교 vol.109, pp.1, 2013, https://doi.org/10.14578/jkfs.2020.109.1.50
  2. Growth and Physiological Responses of Three Landscape Plants to Calcium Chloride vol.13, pp.10, 2021, https://doi.org/10.3390/su13105429
  3. Comparison of the Particulate Matter Removal Capacity of 11 Herbaceous Landscape Plants vol.24, pp.3, 2013, https://doi.org/10.11628/ksppe.2021.24.3.267