• Title/Summary/Keyword: Ground properties

Search Result 1,905, Processing Time 0.025 seconds

Estimation of Specific Gravity of Soil Mixture (배합비에 따른 혼합토의 비중 산정)

  • Shin, Hyun-Young;Kim, Kyoung-O;Kim, You-Seok;Park, Jin-Yoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

Coupling Performance Analysis of a Buried Meshed-Ground in a Multi-layered Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.282-287
    • /
    • 2004
  • Since the manufacturing process in the LTCC process does not allow solid ground planes between ceramic layers to isolate the signal lines, the buried ground should be realized as a meshed ground plane. Both characteristic impedances of the signal lines and couplings between different signal layers are influenced by the properties of these meshed planes. In this paper, we propose a new analysis method for coupling behavior between internal transmission lines, which are isolated by the buried meshed-ground planes. The coupling behavior between layers isolated by meshed-ground planes is investigated by the coupled-transmission line model for the isolated layers. The coupling factors between isolated lines with the meshed-ground are extracted by 2-D FEM calculations.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • Chang, Soo-Ho;Lee, Seok-Won;Bae, Gyu-Jin;Choi, Soon-Wook;Park, Hae-Geun;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.407-414
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been assumed in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compression strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties can be well regressed through exponential and logarithmic functions of time.

  • PDF

Effects of Blending Ratio of Pigments on Properties and Printability of the Double Coated Paper (안료의 배합비가 더블 도공지의 물성 및 인쇄적성에 미치는 영향)

  • Kim, Chang-Keun;Lee, Yong-Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.97-105
    • /
    • 2001
  • The main objective of this study was to investigate effects of pigment mixed with different ratio on the double coated paper. Mineral pigments such as clay and ground calcium carbonate(GCC) as well as hollow sphere plastic pigment were used to evaluate the physical, optical properties and printabilities of double coated paper. The physical properties such as gloss and smoothness, and the printability(ink gloss) of double coated paper were measured to evaluate the effects of the bottom layer on improving the properties of top layer. The data indicated that the usage of hollow sphere plastic pigment for the bottom layer coating improved the surface properties of double coated paper, and that ink gloss was significantly influenced by the structure of bottom layer even when hollow sphere plastic pigment was used for the bottom layer coating.

  • PDF

Analysis of the Physical Properties of Ground before and after Low Flowing Grouting (저유동성 그라우팅 시공전후 지반의 물성변화 분석)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Kang, Won-Dong;Jung, Euiyoup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.115-127
    • /
    • 2019
  • The low-flow grouting injection technique, the target construction method for this study, is a method of pouring mortar into the ground by non-emission replacement principle, which can be expected to increase the density of the ground, and, in some cases, be used as a base file using the strength of the high injection solids, along with low noise, low pollution, and high durability. To verify that the dynamic characteristics of the ground are improved by the low-flow injection technique, the test work was conducted on the site and physical tests were performed, and the quality of the improvement formed in the ground was verified through the indoor test on the core and core recovery rate was analyzed. The density logs test layer calculated the volume density of the ground layer by using the Compton scattering of gamma-rays, and the sonic logs was tested on the ground around the drill hole using a detector consisting of sonar and receiver devices inside the drill hole. As a result of the measurement of the change in physical properties (density and sonic logs) before and after grouting, both properties were basically increased after infusion of grout agent. However, the variation in density increase was greater than the increase in speed after grouting, and the ground density measurement method was thought to be effective in measuring the fill effect of the filler. Strength and core recovery rates were measured from specimens taken after the age of 28 days, and the results of the test results of the diffusion and strength test of the improved products were verified to satisfy the design criteria, thereby satisfying the seismic performance reinforcement.

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

Quality Characteristics of Low-fat Ground Pork Patties Containing Milk Co-precipitate

  • Kumar, Manish;Sharma, B.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.588-595
    • /
    • 2003
  • The optimum level of fresh granulated low-calcium (0.2%) skim milk co-precipitate, as fat substitute in low-fat ground pork patties was determined on the basis of physico-chemical, cooking and sensory properties. Low-fat ground pork patties (<10% total fat), formulated with 15 per cent water, 4 per cent added fat, 1.5 per cent salt and 4-10 per cent milk co-precipitate, were evaluated for proximate composition, cooking characteristics and compared with control patties with 15 % added fat. The moisture and protein content of raw and cooked low-fat patties were significantly (p<0.05) higher than control. The incorporation of milk co-precipitate in low-fat patties improved cooking yield, fat and moisture retention and reduced shrinkage. The sensory properties of low-fat patties were comparable with control patties. The overall acceptability of low-fat patties formulated with 7% milk co-precipitate was significantly (p<0.05) higher than patties with 10% level and non-significantly (p<0.05) higher than low-fat patties containing 4% milk co-precipitate and control. Instrumental Texture Profiles of developed low-fat patties and control patties were comparable with slight increases in hardness and gumminess of the low-fat product. The developed low-fat ground pork patties (7% milk co-precipitate) had lower TBA values, better microbiological and sensory refrigerated storage stability than high-fat control patties packaged in air permeable films for 21 days.

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products

  • Park, Seung-Bum;Lee, Bong-Chun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.125-132
    • /
    • 2006
  • Waste glass has been increasingly used in industrial applications. One shortcoming in the utilization of waste glass for concrete production is that it can cause the concrete to be weakened and cracked due to its expansion by alkali-silica reaction(ASR). This study analyzed the ASR expansion and strength properties of concrete in terms of waste glass color(amber and emerald-green), and industrial by-products(ground granulated blast-furnace slag, fly ash). Specifically, the role of industrial by-products content in reducing the ASR expansion caused by waste glass was analyzed in detail. In addition, the feasibility of using ground glass for its pozzolanic property was also analyzed. The research result revealed that the pessimum size for waste glass was $2.5{\sim}1.2mm$ regardless of the color of waste glass. Moreover, it was found that the smaller the waste glass is than the size of $2.5{\sim}1.2mm$, the less expansion of ASR was. Additionally, the use of waste glass in combination with industrial by-products had an effect of reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass. Finally, ground glass less than 0.075 mm was deemed to be applicable as a pozzolanic material.