• Title/Summary/Keyword: Ground potential rise

Search Result 144, Processing Time 0.027 seconds

Measurement and Analysis of the Dangerous Voltage Around Grounding Electrode for Safety in Substation Ground (변전소 접지설계를 위한 접지전극 주변의 위험전압 측정과 분석)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.214-219
    • /
    • 2011
  • The substation grounding design,"IEEE Guide for Safety in AC Substation Grounding (ANSI / IEEE Std 80)"has been widely used. Substation grounding design and substation grounding resistance of grounding network site to predict the voltage at the risk of a very important task, which is a ground fault current due to the influx of the ground network and due to rise in the Earth's potential can be applied to human dangerous Voltage within safe tolerances be configured to be the ground because the network. IEEE Std. 80 for the substation construction safety equipment on the ground securing the ground electrode and the mesh around the boundary potential distribution in terms of risk analysis by the touch voltage and the reference was to clean up the definition and the basic steps of the voltage of the voltage limits the risk of peripheral grounding electrode Suppression by the simulator through a new secure from dangerous voltage design techniques were presented.

Evaluation of the potential reduction and energy dispersion caused by ionization phenomena at the submerged ground rod (수중에 잠긴 접지전극주변에서 이온화에 의한 전위저감 및 에너지 방출의 평가)

  • An, Sang-Duk;Choi, Jong-Hyuk;Park, Geon-Hun;Yang, Soon-Man;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • When high surge voltage invaded into the ground rod contacted with ground water, the ionization phenomena are happened in the water. Although some researchers have surveyed the ionization phenomena in soil, they have just analyzed the variation of the ground resistance. The most important role of the ground rod is to elect human beings from potential rise and to dissipate energy to the earth safely. In this wort we presented the method evaluating the potential reduction and energy dispersion. Also we analyzed theses factors as a function of charging voltages at the water resistivity of $50\;{\Omega}{\cdot}m$ using the Matlab Program. As a result the ground rod potential was reduced to 38 kV by ionization just below breakdown voltage. The energy more than half of the total injected energy was dispersed through the grounding electrode caused due to ionization.

  • PDF

Measurement of Impedance of the Grounding Grid using Variable Frequency Inverter (가변주파수 인버터를 이용한 접지임피던스 측정)

  • 이복희;엄주홍;김교운
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.303-306
    • /
    • 2002
  • This paper presents a novel method for measuring the ground impedance in grounding systems. A square wave current was injected to the main grounding grid through auxiliary electrode, and the test current and ground potential rise(GPR) were measured using the band-pass filter. Ground impedance was calculated from the sinusoidal waveforms of the test current and GPR in frequency range of 20~2100Hz. Also the resistance and reactance component of ground impedance were analyzed.

  • PDF

Effects of Length of Down Conductor on Transient Ground Impedance (인하도선 길이에 따른 과도접지임피던스 특성)

  • Lee, B.H.;Jeong, D.C.;Lee, S.B.;Lee, T.H.;Jung, H.U.;Lee, K.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2235-2237
    • /
    • 2005
  • This paper presents the transient impedance behaviors of grounding systems to lightning impulse current. The potential rise and effective impulse ground impedance of the test grounding electrodes were measured as a function of the rise time of impulse currents and lengths of down conductor. The transient ground impedances strongly depend on the configuration and size of grounding electrodes, the impulse current shapes and lengths of down conductor, and the inductance of reduce of grounding electrode inductance is an important factor to improve the transient ground impedance.

  • PDF

A Research on the Solution of the Potential Interferences of Isolation Grounding Systems (독립접지방식의 전위간섭 문제 해결을 위한 연구)

  • Lee, Bok-Hee;Lee, Su-Bong;Lee, Tae-Hyung;Kil, Hyung-Jun;Han, Woon-Ki;Kim, Hyo-Jin;Lee, Hyung-Kyon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.49-51
    • /
    • 2005
  • This paper presents the potential interferences in various grounding electrode systems. The ground potential rise and potential interference coefficients were calculated as a function of the configuration and size of grounding electrodes and the distance between grounding electrodes. The potential rise and potential interference coefficient strongly depend on the distance between grounding electrodes, the shape and size of grounding electrodes.

  • PDF

Estimation of Earth Performance by Ground Potential Measurement (대지전위 실측에 의한 접지성능 평가)

  • Lee, Won-Young;Kim, Jea-Hoon;Kim, Ju-Han;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.51-53
    • /
    • 2005
  • Grounding systems are responsible rot the safe operation of a power system whetehr power system fault occures or not, their performance guarantees equipmet protection and personnel safety by limited the ground potential rise and touch voltages as well as step voltages under ground fault condition. therefore, it is necessary to measure the ground resistance frequently for checing the performance of grounding system. In order to verigy the designed grounding measurement system feasibility, two comparison verifications, which are the ground resistnace measurements using the designed system on power service and off power service, are carried out for the same substation.

  • PDF

Analysis of Ground Impedance of a Ground Rod Using Circuit Models (회로모델을 이용한 봉상전극 접지임피던스의 분석)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Eom, Ju-Hong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.95-99
    • /
    • 2004
  • A systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection systems is presented. The measurement and analysis of ground impedance are based on a computer aided technique. The magnitude and phase of ground impedance were measured and analyzed by the modified fall-of-potential method and the proposed computer program algerian using the waveforms of the test current and potential rise. The theoretical analysis of ground impedance were performed with the equivalent circuit models, and the theoretical results were compared with the measured data.

  • PDF

Grounding Characteristic Analysis of Plate Electrodes

  • Kim, Sung-Sam;Kim, Ju-Chan;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2007
  • In this study, an experiment on the efficient construction method of plate electrodes, the influence of electric potential interference in plate electrodes, and building foundations were explored. The experimental result of the electric potential measurement was taken on the basis of the direction of movement and the condition in which the plate electrodes are laid underground in building foundations. It shows that the construction method of laying the plate electrodes vertically exhibits a more efficient reduction of electric potential in a diagonal direction and on an X axis than laying plates horizontally. For plate electrode construction in an area that has uniform conditions, the parallel joint construction method is more effective than a single construction to reduce earth electrical potential and ground resistance. In addition, a straight arrangement performs well in ground efficiency, compared to the parallel arrangement.

Effects of the Length of Down Conductors on Transient Ground Impedances (인하도선의 길이가 과도접지임피던스에 미치는 영항)

  • Lee, Bok-Hee;Lee, Su-Bong;Jeong, Dong-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.72-77
    • /
    • 2006
  • This paper presents the transient impedance behaviors according to the length of down conductors of grounding systems to lightning impulse currents. The potential rise and effective impulse ground impedance of the deeply-driven ground rod and grounding grid subjected to the impulse currents were measured and analyzed as a function of the rise time of impulse currents and lengths of down conductor. The transient ground impedances strongly depend on the configuration and size of grounding electrodes, the waveform of impulse currents and the length of down conductors, and the installation methods reducing the inductance of down conductors are an important factor to decrease the transient ground impedances.

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.