• Title/Summary/Keyword: Ground granulated blast slag

Search Result 381, Processing Time 0.024 seconds

Evaluation of Compressive Strength of Mortar Replaced to High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 모르타르의 압축강도 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Lee, Se-Bum;Lee, Byoung-Cheon;Shin, Kyoung-Su;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.103-105
    • /
    • 2012
  • With blast-furnace slag is a by-product generated when pig iron is produced. It has been used as the concrete admixture due to high reactivity. However, It causes low strength development during early age. In order to make up for this drawback, in this study, we evaluated compressive strength of mortar replaced with high volume blast-furnace slag. Experimental results, Compressive strength of mortar based on blast-furnace slag is affected by cement type, substitution rate of blast-furnace slag and pH after mixing.

  • PDF

An Experimental Study on the Carbonation and Drying Shrinkage of Concrete Using High Volumes of Ground Granulated Blast-furnace Slag (고로슬래그 미분말을 대량 사용한 콘크리트의 건조수축 및 중성화에 관한 실험적 연구)

  • Ryu, Dong-Woo;Kim, Woo-Jae;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • The effect of ground granulated blast-furnace slag (GGBS) and alkaline activator on the properties of setting, compressive strength, drying shrinkage and resistance of carbonation was assessed to develop high volume slag concrete, the GGBS replacement rate of which was more than 80 percent. The changes in the concrete as the replacement rate of GGBS increases were as follows. Initial and final setting time was delayed by two and a half hours, and the compressive strength development properties of concrete in early and long term age were decreased. Drying shrinkage was satisfactory as below $6{\times}10^{-4}$ in every mixture, and yet showed a tangible trend by replacement rate. Carbonation was materially increased. Setting time and early strength development property, however, were extremely advanced by the addition of the alkaline activator. While drying shrinkage was improved by the alkaline activator, resistance to carbonation was not.

Development of slag based Shirasu geopolymer

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Shirasu, a pyroclastic flow deposit, showed considerable performance as aluminosilicate source in geopolymer, based on past research. However, the polymerization reactivity was somewhat lower compared to the traditional fly ash based geopolymer even though the long-term strength was fairly good. The present study concentrates on the development of higher initial strength performance of Shirasu based geopolymer by utilizing ground granulated blast furnace slag as an admixture. Mortars with various mix proportions were adopted to study the effect of parametric changes on strength development along with the addition of slag in different percentages. A combination of sodium hydroxide and sodium silicate was used as alkaline activators considering parameters like molar ratios of alkali to geopolymer water and silica to alkali molar ratio. The mortars were cured at elevated temperatures under different curing conditions to analyze the effect on strength development. Compressive strength test, mercury intrusion porosimetry and X-ray powder diffraction were carried out to assess the strength performance and microstructure of slag-Shirasu based geopolymer. Based on the experimental study, it was observed that the initial and long-term strength development of Slag-Shirasu geopolymer were improved by the addition of slag.

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

Performance of High-Flowable Retaining Wall Material Using Ground Granulated Blast-Furnace Slag and Steel Fiber (고로슬래그미분말 및 강섬유를 적용한 고유동 흙막이 벽체 재료의 성능 평가)

  • Kim, Donggyou;Yu, Kangmin;Lee, Seungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.11
    • /
    • pp.5-11
    • /
    • 2022
  • The objective of this study is to evaluate the mechanical properties of high-flowable retaining wall material (RWM) incorporated with ground granulated blast-furnace slag (SG) and steel fiber (SF) based on a comparison with those of ordinary portland cement (OPC). To produce the specimens of RWM, some chemical agents such as superplasticizer (SP), air-entrained agent (AEA) and viscosity modifying agent (VMA) are added in the fresh RWM. The compressive, split tensile and flexural strength measurements were performed on the hardened RWM specimens. Additionally, surface electric resistivity and absorption tests according to ASTM standards were carried out at predetermined periods after water curing. It was found that the mechanical properties of slag cement concrete (SGC) RWM mix are better than those ordinary portland cement concrete (OPC) RWM mix. The effect of SF is remarkable to improve the mechanical properties of RWM mixes. It is noted that the usage of SG shows a beneficial effect to resist water penetration as well as long-term strength development of RWM mixes.

Properties of Cement Mortar According to Mixing of Circulating Fluidized Bed Fly Ash and Pulverized Coal Fly Ash based on Blast Furnace Slag (고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the characteristics of the cement mortar replaced with fly ash and ground granulated blast furnace slag generated during circulating fluidized bed combustion method and pulverized coal combustion process were investigated. As a result of the study, when mixed with circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash, it is advantageous not only in terms of strength development but also in terms of durability. The circulating fluidized bed combustor fly ash contributes to the improvement of initial reactivity, and the pulverized coal combustion fly ash is involved in long-term strength development through pozzolanic reaction. Therefore, it can be seen that the mixed use of circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash acts as a complementary factor for cement mortar substituted with ground granulated blast furnace slag.

The Evaluation of Chloride ion Diffusion in Concrete Containing Mineral Admixtures by Electrically Accelerated Test (전기촉진시험에 의한 광물질 혼화재를 혼입한 콘크리트의 염소이온 확산성능 평가에 관한 연구)

  • 김영진;이상수;김동석;유재강;김민중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.299-304
    • /
    • 2002
  • This research was to investigate the invasion and diffusion properties of chloride ion on the concrete containing mineral admixtures by the electrically accelerated test. Mineral admixtures selected in mixes were fly-ash, ground granulated blast-furnace slag, silica fume, and meta-kaolin with 3 degrees of replacement ratios. Tang and Nilsson's test method was used to estimate chloride diffusion coefficients of that mixes. As a result, the total current passing charge and the diffusion coefficient of chloride ion were reduced with the use of mineral admixtures and the increase of replacement ratios. In addition, compressive strength was related with diffusion coefficient of chloride ion. Diffusion coefficients of concrete mixed with ground granulated blast-furnace slag showed relatively low value under the range of compressive strength of 400㎏f/㎠.

  • PDF

A Study on the Mix Proportion of Self-Compacting High Performance Concrete (자기충전성 고성능 콘크리트의 배합에 관한 연구)

  • 이승한;한형섭;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.269-274
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. According to the experimental results, fluidity on W/C = 34% was satisfied within slump-flow 65$\pm$ 5cm and U-type self-compactability difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

The relation Between Carbonation and Rebar Corrosion of Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 콘크리트의 탄산화 및 철근부식의 관계)

  • 송형수;김형래;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1193-1198
    • /
    • 2001
  • The glass of Ground Granulated Blast Furnace Slag(GGBFS) was released by the hydroxyl ions during the hydration of the Portland cement. That results in relatively less $Ca(OH)_{2}$ in the concrete replaced with GGBFS than in ordinary portland cement concrete(OPCC). As the quantity of $Ca(OH)_{2}$ is decreased, the rate of carbonation in the concrete replaced GGBFS is faster than OPCC. Therefore, it has been misunderstood that the concrete replaced GGBFS has negative effect on the corrosion of steel by carbonation. Therefore, this study aimed at the relation between carbonation and rebar corrsion in the concrete with GGBFS, measuring air.water permeability, half cell, and corrosion rate by the depth of carbonation.

  • PDF

Evaluation of durability of an ECC(Engineered Cementitious Composite) designed with ground granulated blast furnace slag (고로슬래그 미분말이 혼입된 ECC(Engineered Cementitious Composite)의 내구성 평가)

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun;Ha, Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.329-332
    • /
    • 2006
  • This paper presents the experimental results for durability of an ECC designed with ground granulated blast furnace slag (BFS) through the test method of chloride ion resistance and freezing-thawing resistance. In order to compare with ECC, normal mortar was also tested. Test results showed that BFS ECC exhibited higher durability performance than ordinary mortar. These results suggest that by adding BFS in ECC, its matrix density is increased which results in decreased of deterioration and it also adds to the fiber bridging that contributes in control of cracking.

  • PDF