• Title/Summary/Keyword: Ground granulated blast slag

Search Result 381, Processing Time 0.029 seconds

Fundamental Study on Pervious Concrete Materials for Airport Pavement Cement Treated Base Course (공항포장 시멘트안정처리기층에 적용하기 위한 투수콘크리트 개발에 관한 기초연구)

  • Kim, Seung Won;Oh, Ji Hyeon;Jang, Bong Jin;Ju, Min Kwan;Kim, In Tai;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES : As a research to develop a cement treated base course for an airport pavement which can enhance its drainage, this paper investigated the strength, infiltration performance and durability of the pervious concrete with respect to maximum coarse aggregate sizes and compaction methods. METHODS : This study measured compressive strength, infiltration rate, continuous porosity and freeze-thaw resistance of pervious concrete specimens, which were fabricated with five different compaction methods and different maximum aggregate sizes. In addition, in order to reduce the usage of Portland cement content and to enhance environment-friendliness, a portion of the cement was replaced with Ground Granulated Blast Furnace Slag (GGBS). RESULTS: Compressive strength requirement, 5 MPa at 7 days, was met for all applied compaction methods and aggregate sizes, except for the case of self-compaction. Infiltration rate became increased as the size of aggregate increased. The measured continuous porosities varied with the different compaction methods but the variation was not significant. When GGBS was incorporated, the strength requirement was successfully satisfied and the resistance to freezing-thawing was also superior to the required limit. CONCLUSIONS: The infiltration rate increased as the maximum size of aggregate increased but considering construct ability and supply of course aggregate, its size is recommended to be 25mm. With the suggested mix proportions, the developed pervious concrete is expected to successfully meet requirements for strength, drainage and durability for cement treated base or subbase course of an airport pavement.

The Fundamental Study on Quality Properties of Binary Blended Concrete according to Water Reducing Performance of Chemical Admixture and Estimation Equation of Compressive Strength (화학 혼화제의 감수 성능에 따른 2성분계 콘크리트의 품질특성 및 압축강도 추정식에 관한 기초적 연구)

  • Kim, Kyung-Hwan;Oh, Sung-Rok;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • In this study, binary blended concrete mix with fly ash and ground granulated blast furnace slag was prepared according to 3 level of water reduction performance of chemical admixture (0%, 8% and 16%) and 3 level of water-cement ratio (40%, 45% and 50%) for evaluation of quality properties of binary blended concrete according to performance of chemical admixture. concrete mix was carried out repetition test of three times in order to secure the reliability. As a result, compressive strength according to performance of chemical admixture was found that difference of strength was about 20% occurred, chemical admixture was showed that a great influence on qualities of concrete. In addition, reflected the effect of performance of chemiacal admixture, prediction model equations for concrete compressive strength was proposed, it was found that more than 85% of the high correlation.

An Experimental Study on the mechanical and Shrinkage Properties of Concrete Using High Fineness Fly ash (고분말도 플라이애쉬를 사용한 콘크리트의 역학 및 수축특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Bae, Pil-Sik;Kim, Sung-Soo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.725-728
    • /
    • 2008
  • This study was to establish 3 levels of high fineness fly ash like 4000, 6000, and 8000 class and 30% replacement ratio in order to analyze mechanics and shrinkage properties of concrete by using high fineness fly ash. Furthermore, this study was to make a plan in two levels of water-binder ratio like 40% and 50%. In addition, as a result of measurement by the establishment of combined condition of ternary system as 20% replacement ratio level of three sorts of ground granulated blast furnace slag, there was a tendency to be equal or higher to the plain concrete as the fineness of fly ash increased in strength property. Simultaneously, this study had a tendency in the relationship between the compressive strength and elastic modulus that the more the fineness of fly ash, the more the elastic modulus increased a little. In addition, this study had a tendency that the more elastic modulus moved to the long-term aged one, the more it increased definitely. The effect on the fineness of fly ash remained at a low level in the drying shrinkage. This study has shown that the more the fineness increased, the more the elastic modulus decreased.

  • PDF

Characteristics of Diffusion Coefficient of High Performance Concrete using GGBFS for Road Structures by Accelerating Test Method (슬래그 미분말 혼입률에 따른 도로구조물용 고성능 콘크리트의 압축강도 및 촉진 염소이온 확산 특성)

  • Han, Seong-Woo;Kim, Hong-Sam;Lee, Chan-Young;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.885-888
    • /
    • 2008
  • In recent years, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most high-performance concretes have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituents vary depending on local preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. The results from the study will be utilized as the basic data and guideline in making standard mixproportions and the manufacture, construction work and quality control of HPC

  • PDF

Effect of Fiber Addition for Improving the Properties of Lightweight Foamed Concrete (경량 기포콘크리트의 성능향상에 대한 섬유혼입의 영향)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • The objective of this study is to develop mixture proportioning approach of crack controlled lightweight foamed concrete without using high-pressure steam curing processes, as an alternative to autoclaved lightweight concrete blocks (class 0.6 specified in KS). To control thermal cracks owing to hydration heat of cementitious materials, 30% ground granulated blast-furnace slag (GGBS) was used as a partial replacement of ordinary portland cement (OPC). Furthermore, polyvinyl alcohol (PVA) and polyamid (PA) fibers were added to improve the crack resistance of foamed concrete. The use of 30% GGBS reduced the peak value of hydration production rate measured from isothermal tests by 28% and the peak temperature of foamed concrete measured from semi-adiabatic hydration tests by 9%. Considering the compressive strength development, internal void structure, and flexural strength of the lightweight foamed concrete, the optimum addition amount of PVA or PA fibers could be recommended to be $0.6kg/m^3$, although PA fiber slightly preferred to PVA fiber in enhancing the flexural strength of foamed concrete.

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.

Mechanical Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Overcrowded Arrangement of Bar (과밀 배근된 교량 부재용 초유동 자기충전 콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Kang, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.175-183
    • /
    • 2008
  • Domestically, application of High Flowing Self-Compacting Concrete (HSCC) is limited to building structures and it is difficult to find examples of application in civil infrastructural constructions. However, in the case of North America and Europe, by introducing precast and prestressed system, HSCC is being used for high-density reinforced bridge members. Hence it is assessed that broadening the utilization of HSCC into areas such as bridges and civil construction is required. Therefore in this research, to apply HSCC to high-density reinforced bridge members, ground granulated blast-furnace slag and fly ash were mixed in binary and ternary systems. Also the dynamical characteristics of HSCC, following 1st class regulations of Japan Society of Civil Engineers (JSCE), were assessed to enable application on high-density reinforced structures. The test results revealed ternary system mixture showed better mechanical characteristics than binary system mixture and the application on high-density reinforced precast bridge members seems possible.

The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS (고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete (GGBFS 콘크리트에 매립된 Notch를 가진 FRP Hybrid Bar의 부식저항성 평가)

  • Oh, Kyeong-Seok;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.

Carbonation Behavior of GGBFS-based Concrete with Cold Joint Considering Curing Period (재령 변화에 따른 콜드조인트를 가진 GGBFS 콘크리트의 탄산화 거동)

  • Cho, Sung-Jun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.259-266
    • /
    • 2018
  • In the work, the carbonation behavior and strength characteristics in cold-joint concrete are evaluated for OPC(Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag)concrete considering three levels of curing age (28, 91 and 365 days). The compressive strength in GGBFS concrete is level of 86% of OPC concrete at the 91 days of curing period, but is level of 107% at 365 curing days due to hydration reaction. Carbonation velocities in both OPC and GGBFS concrete significantly decease after 91 curing days. The effect of cold joint on carbonation is evaluated to be small in GGBFS concrete. The increasing ratios of carbonation velocity in cold joint are 1.06 and 1.33 for 28-day and 365-day curing condition, respectively. However they decreases to 1.08 and 1.04 for GGBFS concrete for the same curing conditions.