DOI QR코드

DOI QR Code

Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete

GGBFS 콘크리트에 매립된 Notch를 가진 FRP Hybrid Bar의 부식저항성 평가

  • 오경석 (한남대학교 건설시스템 공학과) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2016.02.25
  • Accepted : 2016.03.09
  • Published : 2016.07.01

Abstract

Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.

콘크리트 구조물은 내구성과 경제성이 확보된 건설재료이지만, 매립된 철근의 부식은 내구적인 문제뿐 아니라 구조물의 안전성에 큰 영향을 준다. 본 연구는 유리섬유와 강재를 에폭시로 일체화 시킨 FRP Hybrid Bar를 적용한 콘크리트에 대해 염해 침투 저항성과 부식수준에 따른 부착성능을 평가하였다. 이를 위해 일반 강재를 적용한 OPC(Ordinary Portland Cement)시편과 GGBFS를 30% 혼입한 시편에 대하여 부식을 0~10% 촉진하여 부착력을 평가하였다. 또한 FRP Hybrid Bar는 에폭시 코팅으로 인해 보통 상태에서는 부식 진전이 매우 작으므로 notch를 인위적으로 가하여 OPC 콘크리트에 매립시켰으며, 이후 부식실험을 수행하였다. 실험 결과, 부식된 철근의 부착력이 21% 수준으로 감소해도 FRP Hybrid Bar에 발생된 notch는 부착력에 큰 영향이 없는 것으로 평가되었다. 또한 GGBFS 콘크리트를 사용한 부재의 경우, 통과 전류가 감소하여 일반철근을 사용해도 70%이상의 부착력을 유지하고 있었다.

Keywords

References

  1. ACI Committee 440 (2006), Guide for the Design and Construction of concrete reinforce with FRP bars.
  2. Ahmed, E. R., Farid, A., and Abdullah, A. R. (2015), Structural performance and Serviceability of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars, Construction and Building Materials, 96, 519-529.
  3. Almusallam, T. H. (2006), Load-deflection Behavior RC Beams Strengthened with GFRP Sheets Subjected to Different Environmental Conditions, Cement and Concrete Composites, 28, 879-889. https://doi.org/10.1016/j.cemconcomp.2006.07.017
  4. Arribas, I., Vegas, I., San-Jose, J. T., and Manso, J. (2014), Durability Studies on steelmaking slag concretes, Materials and Design, 63, 168-176. https://doi.org/10.1016/j.matdes.2014.06.002
  5. ASTM C234-91a (1991), Standard Test Method for Comparing Concretes on the Basis of the Bond Developed with Reinforcing Steel, American Society for Testing and Materials annual book of standards.
  6. Bellezze, T., Malavolta, M., Quaranta, A., and Roventi, G. (2006), Corrosion Behaviour in Concrete of Three Differently Galvanized Steel Bar, Cement and Concrete Composites, 28, 246-255. https://doi.org/10.1016/j.cemconcomp.2006.01.011
  7. Broomfiled, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, 1-15.
  8. Choi, I. C., and Jung, D. J. (2013), Shear Behavior of Concrete Beams Reinforced With FRP Bar, Journal of the Korean Society of Marine Environment and Safety, 19(4), 403-409. https://doi.org/10.7837/kosomes.2013.19.4.403
  9. Choi, O. C., Kim, C. H., Shin, Y. S., and Hong, G. S. (1994), Performance Tests of Epoxy-Coated Reinforcing Bars: Mecharical Properties, Journal of the Korea Concrete Institute, 6(3), 173-179.
  10. Choi, S. J., Mun, J. M., Park, K. T., Park, C. W., and Kwon, S.-J. (2015), Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar, The Korea Contents Society, 15(8), 397-407.
  11. Chung, L., Jay kim, J. H., and Yi, S. T. (2008), Bond Strength Prediction for Reinforced Concrete Members with Highly Corroded Reinforcing Bars, Cement and Cocncrete Composites, 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006
  12. Correia, J. R., Branco, F. A., and Ferreira, J. G. (2007), Flexural Behaviour of GFRP-Concrete Hybrid Beams with Interconnection Slip, Composite Structures, 77, 66-78. https://doi.org/10.1016/j.compstruct.2005.06.003
  13. Hakan, Y., Ozgur, E., and Serhan, S. (2012), An Experimental Study on the Bond Strength between Reinforcement Bars and Concrete as a Function of Concrete Cover, Strength and Corrosion Level, Cement and Concrete Research, 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003
  14. KCI (2008), Design and Construction Guide of Concrete Structures with Reinforcement of FRP, Proceedings of the Korea Concrete Institute, Korea Concrete Institute, 20(1), 67.
  15. KICT (2013), Development of Enhancing Life Span Technology for Waterfront Structures using FRP Hybrid Bar, Korea Institute of Engineering and Building Technology.
  16. Kim, E. K., Kim, J. K., Lee, D. H., Kim, Y. U., and Kim, Y. C. (2004), A Study on Corrosion Resistance of the Reinforcement in Concrete Using Blast-Furnace Slag Powder, Journal of the Korea Concrete Institute, 16(1), 1-9. https://doi.org/10.4334/JKCI.2004.16.1.001
  17. Lee, S. H., and Kwon, S. J. (2012), Experimental Study on the Relationship between Time-Dependent Chloride Diffusion Coefficient and Compressive Strengt, Jounal of Korea Concrete Institute, 24(6), 715-726. https://doi.org/10.4334/JKCI.2012.24.6.715
  18. Lee, S. S., and Song, H, Y. (2007), An Experimental Study on the Durability and Mechanical Properties of High Performance Concrete using Blast-Furnace Slag Powder, Journal of The Archtectural Institute of Korea Structure and Construction, 23(11), 119-126.
  19. Mohammed, M., Hussein, A. T., Abul, K. A., and Shamsad, A. (2014), A Comparative Study of Corrosion Resistance of Different Coatings for Mortar-Embedded Steel Plates, Construction and Building Materials, 56, 74-80. https://doi.org/10.1016/j.conbuildmat.2014.01.059
  20. Oh, B. H., Um, J. Y., and Kwon, J. H. (1992), An Experimental Study on Corrosion Resistance of Epoxy Coated Reinforcements, Journal of the Korea Concrete Institute, 4(4), 161-170.
  21. Sadegh, P. A., Chan, D., and Ali, K. (2015), Corrosion Protection of the Reinforceing Steels in Chloride-Laden Concrete Environment Through Expoy/polyniline-camphorsulfonate, Corrosion Science, 90, 239-247. https://doi.org/10.1016/j.corsci.2014.10.015
  22. Sen, T., and Jagannatha Reddy, H. N. (2013), Strengthening of RC Beams in Flexure using Natural Jute Fibre Textile Reinforced Composite System and its Comparative Study with CFRP and GFRP Strengthening Systems, International Journal of Sustainable Built Environment, 2(1), 41-55. https://doi.org/10.1016/j.ijsbe.2013.11.001
  23. Seo, D. W., Park, K. T., You, Y. J., and Kim, H. Y. (2013), Enhancement in Elastic Modulus of GFRP Bars by Material Hybridization, Enginerring, 5, 685-869.
  24. Song, H. W., Kwon, S. J., Lee, S. W., Byun, K. J. (2003), A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete, Jounal of the Korea Concrete Institute, 15(3), 400-408. https://doi.org/10.4334/JKCI.2003.15.3.400
  25. Song, H. W., Pack, S. W., Lee, S. H., and Kwon, S.-J. (2006), Service Life Prediction of Concrete Structures under Marine Environmnet Considering Coupled Deterioration, Journal of Restoration of Building and Monument, 12(1), 265-284.
  26. Tondolo, F. (2015), Bond Behaviour with reinforcement corrosion, Construction and Building Materials, 93, 929-932.
  27. Zhang, H., He, L., and Li, G. (2015), Bond Failure Performances between Near-Surface Mounted FRP Bars and Concrete for Flexural Strengthening Concrete Structures, Engineering Failure Analysis, 56, 39-50. https://doi.org/10.1016/j.engfailanal.2015.04.018

Cited by

  1. 동결융해 및 UV 폭로시험을 거친 FRP Hybrid Bar의 인발거동특성 평가 vol.5, pp.1, 2016, https://doi.org/10.14190/jrcr.2017.5.1.053
  2. UV 폭로 및 동결융해 시험을 거친 FRP Hybrid Bar의 인장거동 평가 vol.5, pp.2, 2017, https://doi.org/10.14190/jrcr.2017.5.2.130
  3. 동결융해 이후의 FRP Hybrid Bar의 부식 저항성 vol.6, pp.1, 2018, https://doi.org/10.14190/jrcr.2018.6.1.59
  4. 콘크리트구조물 중의 철근 부식 저감을 위한 FRP Hybrid Bar의 적용성 연구 vol.20, pp.5, 2016, https://doi.org/10.5762/kais.2019.20.5.559