• 제목/요약/키워드: Ground faults

검색결과 223건 처리시간 0.034초

스위치 레벨 결함 모델을 사용한 결함시뮬레이터 구현 (An Implementation of the Fault Simulator for Switch Level Faults)

  • 연윤모;민형복
    • 한국정보처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.628-638
    • /
    • 1997
  • VSLI회로에서 스위치 레벨 결함 모델은 stuck-at결함만 사용하는데 한계가 있다. 따라서 본 연구는 스위치 레벨 결함 모델인 트랜지스터 stuck-open과 stuck-close결함을 다룰 수 있는결함 시뮬레이터를 구현한다. 스위치 레벨 회로는 이론적으로 신호 흐름이 양방향으로 전달되지만 실제로 대부분의 신호 흐름은 약 95%정도가 단 방향을로 설정되어 평가되는 것으로 나타내고 있다. 본 연구에서는 스위치 레벨 회로를 단반향 그래프 모델 로 변환시켜 해석한다. 스위치 레벨 회로는 EDIF컴파일러에 의해 입력되고 두개의 단방향으로 재구성된 자료구조를 만든다. 스위치 레벨 회로는 신호 흐름 경로가 도입되는 지배적 경로 기법이 제시된다. 지배적 경로는 경로를 판단하여 최종 출력 상태값을 결정하는 논리 시뮬레이션을 수행한다. 스위치 레벨 결함 시뮬레이션은 노들들로 연결되는 경로 상에 임의 트랜지스터의 stuck-open,stuck-close 결함을 주입시키고, 트랜지스터 저항값을 적용한 노드세기의 계산에 의한 지배적 경로를 평가한다. 이때 최초 입력은 two pattern vector를 인가하여 정상회로의 최종 출력 상태값과 결함회로의 출력 상태값을 비교하여 결함 검색하며, 그결함 검색의 정확성 을 보인다.

  • PDF

EMTP-RV를 이용한 2차 아크 모델링 (Modelling of Secondary Arc Using EMTP-RV)

  • 오윤식;강성범;서훈철;김철환
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.937-943
    • /
    • 2012
  • Most of faults occurred in transmission lines are single-phase to ground faults and transient faults. Single-phase auto reclosing is an appropriate scheme to maintain the system stability and restore the system effectively when those faults are occurred. In single-phase auto reclosing scheme, the secondary arc is generated after faulted phase is tripped to eliminate the fault and it is sustained by the capacitive and inductive coupling to the healthy phases. It is important to reclose the faulted phase after fully extinction of secondary arc because of the damage applied to system. Therefore, it is necessary to research on the detection of secondary arc extinction to ensure high success rate of reclosing. In this step, firstly, the accurate modelling of secondary arc should be performed. In this paper, the modelling of secondary arc is performed by using EMTP-RV and the simulation results show that the implemented model is correct and effective.

22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석 (The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System)

  • 정금영;최선규;심건보;김경철
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

Simulink를 이용한 교류 급전변전소의 스코트변압기 모델링 (Scott Transformer Modeling using Simulink on the AC Substation)

  • 김태근;박영;이종우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2317-2322
    • /
    • 2011
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using Sinulink.

  • PDF

가로등의 지중전로 손상으로 인한 인체감전 위험성에 대한 실험 연구 (Human Experimental Studies on the Risk of Electric Shock due to Damage of Underground Wire in Street Lamp)

  • 정재희
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.6-12
    • /
    • 2009
  • This study performed an experiment for the danger of an electric shock in the human body, which is directly touched or approached to the exposure of buried metals in a leak caused by certain ground faults at a buried cable in street lamp. In the results of the experiment, the dangerous of electric shocks due to the earth specific resistance and wet and submersion of the earth surface represents a high level as the human body is directly touched to the buried metal at a leak point. In addition, it can be seen that the safety of the human body is influenced by the earth specific resistance, separated distance from buried metals, and shape of buried metals at around the leak point.

전기철도의 교류 급전변전소에서 PSIM을 이용한 스코트변압기 모델링 (Scott Transformer Modeling using PSIM on the AC Substation in the Elect ric Railroad)

  • 김성대;최규형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1892-1897
    • /
    • 2010
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. PSIM(Power Electronics Simulator) is optimal simulation software in field of the power electronics and provide the simple and convenient user interface. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using PSIM.

  • PDF

지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구 (Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault)

  • 김진태;이승용;박상진;차한주;김수열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

사고전류 변화에 따른 일체화된 삼상자속구속형 고온초전도 사고전류제한기의 사고전류 제한 특성 분석 (Analysis of Fault Current Limiting Characteristics According to Variation of Fault Current level in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 한병성;박충렬;두호익;최효상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.39-40
    • /
    • 2007
  • The analysis of fault current limiting characteristics according to variation of fault current level in the integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on an iron core with the same turn's ratio between coil 1 and coil 2 for each single phase, was performed. To analyze the current limiting characteristics of this integrated three-phase flux-lock type SFCL, the short circuit experiments was carried out the various three-phase faults such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the fault current limiting characteristic was improved according to increase of fault current level.

  • PDF

Estimation of Voltage Swell Frequency Caused by Asymmetrical Faults

  • Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1376-1385
    • /
    • 2017
  • This paper proposes a method for estimating the expected frequency of voltage swells caused by asymmetrical faults in a power system. Although voltage swell is less common than voltage sag, repeated swells can have severe destructive impact on sensitive equipment. It is essential to understand system performance related to voltage swells for finding optimal countermeasures. An expected swell frequency at a sensitive load terminal can be estimated based on the concept of an area of vulnerability (AOV) and long-term system fault data. This paper describes an effective method for calculating an AOV to voltage swells. Interval estimation for an expected swell frequency is also presented for effective understanding of system performance. The proposed method provides long-term performance evaluation of the frequency and degree of voltage swell occurrences.

송전 선로의 사고 거리에 따른 특성 주파수 해석 (Analysis of Characteristic Frequency along Fault Distance on a Transmission Line)

  • 남순열;홍정기;강상희;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권8호
    • /
    • pp.432-437
    • /
    • 2004
  • Since the characteristic frequency is decreased in proportion to the fault distance, the characteristic frequency component may be insufficiently eliminated by a low-pass filter on a long transmission line. In order to set a standard for the cut-off frequency of the low-pass filter, this paper proposes a method for obtaining the characteristic frequencies due to line faults. The application results of the proposed method are presented for line to ground (LG) faults and line to line (LL) faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault signals under different fault locations and fault inception angles. By comparison between the characteristic frequencies obtained from the proposed method and the EMTP simulation, it is shown that the proposed method accurately obtains the characteristic frequency.