• Title/Summary/Keyword: Ground fault

Search Result 736, Processing Time 0.042 seconds

Analysis on Reduction Method of Symmetrical Fault Current in a Power System with a SFCL applied into Neutral Line (전력계통의 중성선에 적용된 초전도한류기의 대칭고장전류 저감방안 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) applied into the neural line of a power system, which can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault, was reported to be the effective application location of the SFCL in a power system. However, the limiting operation for the symmetrical fault current like the triple line-ground fault is not effective because of properties of the balanced three-phase system. In this paper, the limiting method of the symmetrical fault current in a power system with a SFCL applied into neutral line was suggested. Through the short-circuit experiments of the three-phase fault types for the suggested method, the fault current limiting and recovery characteristics of the SFCL in the neutral line were analyzed and the effectiveness of the suggested method was described.

New Ground Fault Protective Relay in DC Traction Power System (비접지 DC 급전계통에서 전류형 지락보호계전기의 사용)

  • Chung S.G.;Baek N.W.;Kim Y.S.;Lee S.H.;Lee H.M.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1297-1302
    • /
    • 2004
  • In DC power distribution system for urban rail transits potential relay, 64P, is used to detect the ground faults. The problem with this 64P is that though it detects the ground fault it cannot identify the faulted region. Therefore the faulted region cannot be isolated properly. It could results in power loss of the trains on the healthy regions and the safety of the passengers in the trains could be affected adversely. A new ground fault protective relaying scheme that can identify the faulted region is presented in this paper. The new concept uses the current differential scheme and the permissive scheme to identify the faulted region correctly. A device with similar characteristic to the arrestor is adapted to use the current relay for the ground fault detection. The role of the device is to block the ground leakage current in normal operating condition and enable the ground fault current to flow in ground fault condition. The algorithm of the new relay and the effect of the newly adapted device in the new relaying scheme are discussed.

  • PDF

The Advanced Protection Coordination Scheme using Phase Angle of Zero-Sequence Current in Ungrounded System (비접지 계통에서 영상전류 위상을 이용한 개선된 보호협조 방안)

  • Choi, Young-Jun;Lim, Hee-Taek;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. The protection coordination method using SGR(Selective Ground Relay) and OVGR(Overvoltage Ground Relay) is generally used in ungrounded system. But this method only detects fault line and it has the possibility of malfunction. This paper proposed to advanced protection coordination method in ungrounded system. The method just using zero-sequence current can detect fault line, fault phase, fault section at terminal device. The general protection method is used to back up protection. In the case study, the proposed method has been testified in demo system by Matlab/Simulink simulations.

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

Fragility analysis of concrete-filled steel tube arch bridge subjected to near-fault ground motion considering the wave passage effect

  • Liu, Zhen;Zhang, Zhe
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.415-429
    • /
    • 2017
  • This paper focuses on the impact of the wave passage effect on the long-span bridge. In order to make the wave passage effect more obvious, ground motion samples are selected from the near-fault ground motion of the 1999 Chi-Chi earthquake and an arch bridge with a 280m main span is selected as a bridge sample. The motion ground samples are divided into two groups according to the characteristics of near-fault. A sequence of fragility curves is developed. It is shown that the seismic damage is increased by the wave passage effect and the increase is more obvious in the near-fault ground motion.

A Study on Trouble and Arrangement of the Ground-Fault Protection for 2 Step Voltage Distribution System of Premises (2 Step 이상 운용 고객의 구내배전계통 지락보호시스템 구성 현황 및 문제점 검토)

  • Im, Jin-Sung;Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.73-77
    • /
    • 2010
  • Most accidents occurred in power receiving & transforming facility are ground fault. The quality of power supply is deteriorated since the ground fault is not detected promptly. This paper analyzes the problems about system-grounding type of 2 step power receiving & transforming facility, arrangement of protection relaying scheme and ground-fault protection system of ungrounded system. Then, this paper presents the arranging scheme of system-grounding type to improve power supply reliability.

Seismic response of nonstructural components considering the near-fault pulse-like ground motions

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan;Xie, Li-Li
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1213-1232
    • /
    • 2016
  • This paper investigates the response of nonstructural components in the presence of nonlinear behavior of the primary structure considering the near-fault pulse-like ground motions. A database of 81 near-fault pulse-like ground motions is used to examine the effect of these ground motions on the response of nonstructural components. For comparison, a database of 573 non-pulse-like ground motions selected from the PEER database is also employed. The effects of peak ground velocity (PGV), maximum incremental velocity (MIV), primary structural degrading behavior and damping of nonstructural components are evaluated and discussed statistically. Results are presented in terms of amplification factor which quantifies the effect of inelastic deformations of the primary structure on subsystem responses. The results indicate that the near-fault pulse-like ground motions can significantly increase the amplification factors of nonstructural components with primary structural period and the magnitude of increase can reach 17%. The effect of PGV and MIV on amplification factors tends to increase with the increase of primary structural ductility. The near-fault pulse-like ground motions are more dangerous to components supported by structures with strength and stiffness degrading behavior than ordinary ground motions. A new simplified formulation is proposed for the application of amplification factors for design of nonstructural components for near-fault pulse-like ground motions.

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.