• Title/Summary/Keyword: Ground current

Search Result 1,729, Processing Time 0.03 seconds

A New Distance Relaying Algorithm for Phase-to-Ground Fault in 765kV Untransposed Transmission Lines (765kV 비연가 송전선로에서 단상지락고장 시어 거리개전 알고리즘)

  • AHN YONG JIN;KANG SANG HEE
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.452-454
    • /
    • 2004
  • An accurate digital distance relaying algorithm which is immune to reactance effect of the fault resistance and the load current for phase-to-ground fault in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for Phase-to-ground fault uses a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

An Elimination Method Of the Circulating Current Flowing into Coaxial-Neutral Lines in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] 지중배전계통케이블의 동심중성선에 흐르는 순환전류의 제거방안 및 효과)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. Power loss due to the circulating current consequently reaches to about 76[%] total losses occurred in all conductor lines. This power loss provokes additional temperature rise of the underground cable lines and finally results in 20[%] reduction of the current capacity of the cables. This paper presents a new ground method to overcome such a problem. The proposed method eliminates the circulating current flowing in the coaxial-neutral line effectively. Measurement results confirmed from the practical site-test show validity and effectiveness of this research.

Operational Characteristics in integrated Three-Phase a Flux-Lock type SFCL according to Fault Conditions (3상 일체화된 자속구속형 전류제한기의 동작특성)

  • Lee, Na-Young;Choi, Hyo-Sang;Jeong, Soo-Bok;Lee, Sang-Il;Nam, Gueng-Hyun;Lim, Sung-Hun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.467-470
    • /
    • 2006
  • Superconducting fault current(SFCLs) are expected to improve not only reliability but also stability of real power systems. The analysis on the single line-to-ground fault current of the integrated three phase flux-lock type SFCL, which consists of three flux-lock reactor wound on an iron core in each single phase and three YBCO thin films, was investigated in current limiting operating characteristics. We compared additive polarity winding with the subtractive one in the flux lock reactor. Its turns ratio each phase between the primary and the secondary coils is 63:42. When a single line-to-ground fault occurred in any phase, the peak value of line current in the fault phase of the additive polarity winding increased up to 31.44[A] during first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to 81.77[A] under the same conditions. This is because the current flow between the primary and the secondary windings becomes to be additive or subtractive in each winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to ground fault.

  • PDF

A Study of Correlation between SPT N-value and Exerted Electrical Energy Required for Ground Drilling I : Basic Study (Laboratory Soil Box Test) (지반굴착에 소요되는 전기에너지와 표준관입시험 N값과의 상관관계 연구 I : 기초연구(실내토조실험))

  • Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.45-53
    • /
    • 2012
  • Ground drilling is a common method to conduct site investigation, soil improvement, and pile installation. In the point of construction ground drilling requires electrical energy to drill a hole in ground in which the energy exerts into the motor located on the head of auger and generates rotational power. In this paper it is verified that the exerted electrical energy is closely related to the strength characteristics of ground. Measurement sensors, recording system, and drilling system were developed to obtain exerted motor current and drilling depth and laboratory soil box tests were carried out. The measured motor current and boring depth were applied to predict SPT N-value and the prediction results were compared to SPT N-value of laboratory tests. The test results show that the exerted electrical energy to bore ground be a good index to estimate SPT N-value.

Multiple Camera-Based Correspondence of Ground Foot for Human Motion Tracking (사람의 움직임 추적을 위한 다중 카메라 기반의 지면 위 발의 대응)

  • Seo, Dong-Wook;Chae, Hyun-Uk;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.848-855
    • /
    • 2008
  • In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.

Development of Delta-I ground fault Protective Relaying Scheme for DC Traction Power Supply System (비접지 DC 급전시스템에서의 Delta-I 지락보호계전 시스템)

  • Chung, Sang-Gi;Kwon, Sam-Young;Jung, Ho-Sung;Kim, Ju-Rak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.529-535
    • /
    • 2006
  • In DC tracking power supply system, ground faults are currently detected by the potential relay, 64P. Though 64P relay detects ground fault, it cannot identify the faulted region which causes long traffic delays and safety problem to passengers. A new ground fault protective relay scheme, ${\Delta}I$ ground fault protective relay, that can identify the faulted region is presented in this paper. In ${\Delta}I$ ground fault protective relaying scheme, ground fault is detected by 59, overvoltage relay, which operates ground switch installed between the negative bus and the ground. It preliminarily chooses the faulted feeder after comparing the current increases among feeders and trips the corresponding feeder breaker. After some time delay, it then recloses the breaker if it finds the preselected feeder is not the actual faulted feeder. Whether or not the preselected feeder is the actual faulted feeder is determined by checking the breaker trip status in the neighboring substation in the direction of the tripped breaker. If the corresponding breaker in the neighboring substation is also tripped, it finally judges the preselected feeder is actually a faulted feeder. Otherwise it recloses the tripped breaker. Its algorithms is presented and verified by EMTP simulation.

Improved Ground differential relaying algorithm for the protection of a line-to-line fault of transformer (변압기의 선간 단락사고 보호를 위한 지락비율차동 계전 알고리즘의 성능향상 방법)

  • Kang, Hae-Gweon;Kim, Jin-Ho;Kim, Se-Chang;Park, Jong-Soo;Park, Jong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.760-761
    • /
    • 2011
  • Ground differential relay is used to provide fast, sensitive, and selective protection for the wye connected and grounded electrical power equipment such as generators, power transformers, and grounding transformers. The ground differential protection only protects the ground faults within the protection zone, so that it can't protect the line-to-line fault. This paper proposes the algorithm to provide the protection for the line-to-line fault through the ground differential protection. The proposed algorithm detects the line-to-line fault of transformer using the comparison between the positive and the negative current, when the ground differential relay dose not operate. The performance of the algorithm is verified using a PSCAD/EMTDC simulator under various case studies.

  • PDF

Measurement and Analysis of the Dangerous Voltage Around Grounding Electrode for Safety in Substation Ground (변전소 접지설계를 위한 접지전극 주변의 위험전압 측정과 분석)

  • Son, Seok-Geum;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.214-219
    • /
    • 2011
  • The substation grounding design,"IEEE Guide for Safety in AC Substation Grounding (ANSI / IEEE Std 80)"has been widely used. Substation grounding design and substation grounding resistance of grounding network site to predict the voltage at the risk of a very important task, which is a ground fault current due to the influx of the ground network and due to rise in the Earth's potential can be applied to human dangerous Voltage within safe tolerances be configured to be the ground because the network. IEEE Std. 80 for the substation construction safety equipment on the ground securing the ground electrode and the mesh around the boundary potential distribution in terms of risk analysis by the touch voltage and the reference was to clean up the definition and the basic steps of the voltage of the voltage limits the risk of peripheral grounding electrode Suppression by the simulator through a new secure from dangerous voltage design techniques were presented.

Induced Potential Rises between the Neigboring Grounding Electrodes due to the Impulse Voltages (임펄스전압에 의한 근접 접지전극사이의 유도전위상승)

  • Lee, B.H.;Eom, J.H.;Lee, S.C.;Jeon, D.K.;Lee, K.O.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1741-1743
    • /
    • 2001
  • This paper presents the induced ground potential rise distributions on several ground electrodes buried nearby. These experiments were conducted with the impulse currents as a function of the ground electrodes types and distances from the current injection point. The ground potential is significantly induced in the vicinity of ground electrodes, and the induced ground potential rises can caused unwanted erratic operation of electronic device.

  • PDF