• Title/Summary/Keyword: Ground current

Search Result 1,725, Processing Time 0.029 seconds

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Characteristics Analysis of Transient Impedances of Small-sized Ground Electrodes in a Ionization Region of Soil (토양의 이온화영역에서 소규모 접지전극의 과도접지임피던스 특성 분석)

  • Yoo, Yang-Woo;Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.78-84
    • /
    • 2009
  • This paper presents measurement results of transient impedance for small-sized ground electrodes in a discharge region of soil. For a realistic analysis of ionization characteristics near the ground electrode, three types of ground rod installed outdoors and high voltage impulse generator were used for injecting test current. From the analysis of response voltage and current flowing ground electrode to earth, it is verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively in high resistivity soil. As a threshold electric field density for ionization is small in low resistivity soil, the shape of ground electrode rarely contributes to the transient impedance. And, from the experiment result with shape of ground electrode, the rod with needles is more effective to reduce the transient impedance than the plate electrode in the voltage range including with ionization regions of soil.

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

13M ANTENNA UPGRADE PLAN FOR FUTURE MISSION

  • Park, Durk-Jong;Yang, Hyung-Mo;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.493-495
    • /
    • 2007
  • Future sub-meter resolution LEO missions require simultaneous dual-polarization downlink and/or multiple channel downlinks in single polarization. Especially, dual-polarization is needed to cope with bandwidth limitation due to high speed data transmission. Current KARI 13m X-Band antenna system needs to be upgraded to cope with such downlink schemes. This paper describes brief discussions on engineering work regarding how to meet the new requirements with minimum impact on current system as well as C&M (Control and Monitoring) software.

  • PDF

Domestic Law and Legal Countermeasures for Ground Excavation related Accidents (지반굴착분야에서의 사고발생시 법률적 대응방안)

  • Lee, Sang-Ho;La, Seung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.671-676
    • /
    • 2009
  • Accidents during ground excavation and temporary or permanent structure construction have always occurred regardless of how much technology improved. Many causes can be derived from various cases and technical revision has always been a matter of interest to the geotechnicians. But the legal procedures that follow the construction accidents have scarcely been studied by the geotechnical society even though it influences most on the everyday lives of the parties of interest. In this respect, this paper describes the current judicial system, law and legal practices for ground excavation related accidents along with several case studies on judicial precedents and presents methods that should be taken to improve the current judicial system.

  • PDF

Identifying the Appropriate Position on the Ground Plane for MIMO Antennas Using Characteristic Mode Analysis

  • Won, Jusun;Jeon, Sinhyung;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 2016
  • In this paper, a method for identifying the appropriate position on the ground plane for antennas is proposed based on the current correlation coefficient ($C^3$). This method explains that the mutual coupling between antennas when locating several antennas on the same ground plane is necessary. Given the current distribution on the ground plane induced by each antenna, easily estimating the coupling between antennas is possible. This paper also demonstrates that the proposed method can be used in the design of a multi-input multi-output system. The measured data are in good agreement with the simulation results.

Effects of Length of Down Conductor on Transient Ground Impedance (인하도선 길이에 따른 과도접지임피던스 특성)

  • Lee, B.H.;Jeong, D.C.;Lee, S.B.;Lee, T.H.;Jung, H.U.;Lee, K.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2235-2237
    • /
    • 2005
  • This paper presents the transient impedance behaviors of grounding systems to lightning impulse current. The potential rise and effective impulse ground impedance of the test grounding electrodes were measured as a function of the rise time of impulse currents and lengths of down conductor. The transient ground impedances strongly depend on the configuration and size of grounding electrodes, the impulse current shapes and lengths of down conductor, and the inductance of reduce of grounding electrode inductance is an important factor to improve the transient ground impedance.

  • PDF

DESIGN OF OPTIMUM GROUNDING BY THE RESISTIVITY ANALYSIS OF MULTI-LAYERED SUBSURFACE (다층 대지비저항 해석에 의한 최적 접지설계)

  • HyoungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.179-188
    • /
    • 2003
  • The object of grounding of electrical facility is to protect human and machine damage from the power supply interruption high voltage by use of the accident current dissipating into the ground. Generally, it is not easy to make suitable ground design for inhomogeneous subsurface geology and the variability of accident current in magnitude and duration time. To make efficient ground, ground potential rise must be controlled in the way of overall lowering and evenness. This study shows the case of optimized ground design by use of subsurface resistivity structure from electrical soundings.

  • PDF

A Consideration on 3-Phase Non-Loop, Multiple-Point Ground Method in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] CNCV케이블 지중배전계통의 3상 비일괄 동심증성선 다중접지방식에 대한 이론적고찰)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with 3-wire loop multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded at every connecting section. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. This paper presents a new ground method to overcome such a problem and a comprehensive analysis in tows of current capacity of power cables, induced voltage of cable sheath, and electromagnetic interference voltage from power cable lines.

Analisys about the Earth Fault Characteristics in the Wireless Power Transmission System of the Electric Vehicle (무선충전 전기자동차 전력공급장치에서의 지락사고 특성 분석)

  • Jung, Jin-Soo;Han, Woon-Ki;Park, Chan-Um;Song, Young-Sang;Lim, Hyun-Sung;Cho, Min-Ho;Lyu, Ji-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.13-17
    • /
    • 2014
  • In this paper, the risk of electric shock is analyzed through analysis for characterization of potential distribution analysis and ground fault current analysis near the area where there are occurred a ground fault at electric vehicle wireless charging system using 20kHz. Studies for electric vehicle wireless charging system are in the works for development of efficiency increase, pickup shape design and communication module as a fundamental research step. But the research related to electrical safety and is still scarce state so that more studies are necessary to commercialize. As a result of analysis, it is verified that induced voltage is arisen more up to 45V near the a area of accident during ground fault and fault current has been maintained continuously without clearing fault condition by operating characteristics for circuit breaker and inverter.