• Title/Summary/Keyword: Ground block

Search Result 304, Processing Time 0.029 seconds

The Effects of Spatial Patterns in Low Resolution Thematic Maps on Geostatistical Downscaling

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.625-635
    • /
    • 2011
  • This paper investigates the effects of spatial autocorrelation structures in low resolution data on downscaling without ground measurements or secondary data, as well as the potential of geostatistical downscaling. An advanced geostatistical downscaling scheme applied in this paper consists of two analytical steps: the estimation of the point-support spatial autocorrelation structure by variogram deconvolution and the application of area-to-point kriging. Point kriging of block data without variogram deconvolution is also applied for a comparison purpose. Experiments using two low resolution thematic maps derived from remote sensing data showing very different spatial patterns are carried out to discuss the objectives. From the experiments, it is demonstrated that the advanced geostatistical downscaling scheme can generate the downscaling results that well preserve overall patterns of original low resolution data and also satisfy the coherence property, regardless of spatial patterns in input low resolution data. Point kriging of block data can produce the downscaling result compatible to that by area-to-point kriging when the spatial continuity in block data is strong. If heterogeneous local variations are dominant in input block data, the treatment of the low resolution data as point data cannot generate the reliable downscaling result, and this simplification should not be applied to donwscaling.

Fundamental Research on the Substitution Earthing Electrode for the Foundation of Building (건축물기초의 대용접지극에 관한 기초연구)

  • Kim, Sung-Sam;Kim, Ju-Chan;Koo, Bon-Kook;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • The electrical characteristics of concrete block including a reinforcing rod in the foundation of the housing was fundamentally reviewed. It was tried to apply the substitutional earthing electrode in the foundation of the building. In order to identify the difference in the earthing resistance between mortar block and concrete block model, those models including a reinforcing rod in their inside were prepared and investigated for the earthing resistance. In results, the earthing resistance was largely affected by the block's resistivity compared to the change of resistance in reinforcing rods and the ground resistivity.

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.

Micellar Enhanced Ultrafiltration Using PEO-PPO-PEO Block Copolymer (PEO-PPO-PEO 블록공중합체를 사용한 마이셀 증진 한외여과법 (유해유기물의 가용화 및 분리특성))

  • 최영국;이동진;김정훈;김동권;이수복
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.83-86
    • /
    • 1998
  • 1. Introduction : Low molecular harmful organics such as 1-naphthol and phenol are widely used in industries, and pose serious environmental problems. Wastewater containing low molecular harmful organics may be ejected from various sources including metal-plating industries, circuit-board manufacturing process, photographic and photo-processing industries, refineries and metal-tailing leachate. The pollution of nation harbors, waterways and ground water resources with these organics has reached critical portions, and might also give hazardous influence on human health. Micellar enhanced ultrafiltration(MEUF) is a recently developed process to remove dissolved organics and/or heavy metals present in small or trace quantities from aqueous solution. In this system, the fatal defect is leakage of surfactants especially at low concentration below CMC(critical micelle concentration), which becomes a secondary pollution. Our group proposed to use biosurfactant and polymeric micelle to solve problems mentioned above. In this study we investigated a modified MEUF using PEO-PPO-PEO (polyethyleneoxide-polypropyleneoxide-polyethyleneoxide) block copolymers for the removal of organic solutes such as 1-naphthol and phenol from aqueous wastewater. We proposed PEO-PPO-PEO block copolymers as new surfactants for forming micelles in MEUF, and investigated the solubilization characteristics and efficiency for the removal of 1-naphthol and phenol. PEO-PPO-PEO block copolymers are, environmentally mild and safe as biosurfactants.

  • PDF

A Study on Robust Moving Target Detection for Background Environment (배경환경에 강인한 이동표적 탐지기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.55-63
    • /
    • 2011
  • This paper describes new moving target detection technique combining two algorithms to detect targets and reject clutters in video frame images for surveillance system: One obtains the region of moving target using phase correlation method using $N{\times}M$ sub-block images in frequency domain. The other uses adaptive threshold using learning weight for extracting target candidates in subtracted image. The block region with moving target can be obtained using the characteristics that the highest value of phase correlation depends on the movement of largest image in block. This technique can be used in camera motion environment calculating and compensating camera movement using FFT phase correlation between input video frame images. The experimental results show that the proposed algorithm accurately detects target(s) with a low false alarm rate in variety environment using the receiver operating characteristics (ROC) curve.

A Study on the Concrete Compressive Strength Characteristics mixing Stone Dust Produced by Stone Block Manufacturing (석재(石材) 가공(加工)시 발생한 석분(石粉)이 혼합된 콘크리트의 압축강도(壓縮强度) 특성(特性)에 관한 연구)

  • Chae, Young-Suk;Min, In-Ki;Song, Gab-Young
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.46-53
    • /
    • 2009
  • The stone dusts produced during the manufacturing process of stone blocks are considered as one of industrial waste materials. This stone dusts are managed to either burying under the ground or stacking in the yard, but this disposal process is required an extra costs. The stone dust disposal like burying or stacking also cause environmental pollution such as ground pollution and subterranean water pollution. Thus, this study was conducted to explore the possibility of recycling stone dusts as a concrete mixing material in order to extend recycling methods. Based on the experiment results on various ratios of cement to stone dust content, the compressive strengths of concrete were recorded in the range of $20{\sim}30\;N/mm^2$. The results did not show any decrease in compressive strength due to the stone dust content. It can be concluded that the stone dusts produced by stone block manufacturing can be sufficiently recycled as one of concrete mixing materials in the aspect of compressive strength.

Lateral Earth Pressures and Displacements through Full Scaled Lateral Loading Test of Concrete Electric Pole Embedded in Ground (지중에 근입된 콘크리트전주의 실물 수평재하실험에 의한 수평토압과 변위특성)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 2011
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find horizontal earth pressure through full scale pull-out tests. The horizontal earth pressure increased with embedded depth of electric pole, and earth pressure of lower passive zone decreased. The deeper of anchor block, earth pressure of passive zone becomes less. lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5m depth of anchor block and 1.3m additional laying depth of poles into ground.

A Study on the Selectively Block Barrier for Prevent the Spread of TPH and Phenol in the Ground (지중 내 TPH, Phenol의 확산방지를 위한 선택적 차수재 제조에 관한 연구)

  • HoJin Lim;WooRi Cho;SeungJin Oh;SuHee Kim;JaiYoung Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • In this study, a selecvively block barrier was developed to prevent the spread of contaminants (TPH, Phenol) in the ground only when contamination occurs. The materials were used Jumunjin sand, bentonite, polyolefin elastomer and spill hound marine. First, the properties and environmental hazards characteristics of materials were analyzed for evaluated their usability. Then, the possibility of use as a barrier material was confirmed by analyzing the water permeability characteristics that change after 24 hours of contact with contaminants. As a result of the analysis, the pH of each component was similar to the general groundwater pH range. In addition, the toxicity characteristics and the possibility of dissolution of hazardous substances, it was determined that there was no environmental hazard as the content was below the regulation value. Lastly, when comparing the permeability coefficient before and after contact with the contaminant, the permeability coefficient of approximately α × 10-3cm/sec before contact was reduced to α × 10-6cm/sec after contact with the contaminant.

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

Development of Fabrication Method for Translucent Concrete and the Material Characteristics Associated with the Use of Mineral Admixture (반투명 콘크리트의 제조기법 개발과 무기혼화재 혼입에 따른 역학적 특성)

  • Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.69-78
    • /
    • 2011
  • As recent concrete products changed to pursue high class, high quality, and high strength, as translucent concrete was developed to meet esthetic effects and exhibition purpose of structures. This study aims at introducing fabrication methods of various shapes of translucent concrete and evaluating feasibility of using mineral admixture such as fly ash, ground granulated blast furnace slag and granulated glass throughout experimental tests. As the result, it was found that compressive strength of translucent concrete block at 28 days is 32.2MPa and higher elastic modulus and Poisson's ratio than ordinary concrete block, which means that translucent concrete is widely applicable to structural purpose. Application of fly ash as a replacement of cement showed lower strength of 85 to 96% than Portland cement. In the meanwhile, ground granulated blast furnace slag showed 82 to 96% depending on the amount of replacement. The use of granulated glass as replacement of optical fiber was not applicable due to invisibility of light in concrete.

  • PDF