• Title/Summary/Keyword: Ground Weapon System

Search Result 61, Processing Time 0.023 seconds

Economical & Technological Ripple Effects in Acquiring New Weapon System : Focused on Ground·Sea·Air Weapon System (국방무기체계 연구개발 기반 경제적·기술적 파급효과 : 지상·해상·공중 무기체계를 중심으로)

  • Shin, Sang-Wook;Oh, Cheon-Kyun;Yim, Dong-Soon;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.111-122
    • /
    • 2018
  • The private sector is currently reviewing the feasibility of the project or deciding economic policies by analyzing the economic ripple effects. However, the arms acquisition project focuses on the need for the national defense weapons system by analyzing the costs and the effectiveness of the analysis and reviewing the necessity and feasibility of the project. In order to analyze the economic ripple effects, KB (the Bank of Korea) prepares and publishes an analysis table of industrial associations in a given unit. IAAR (the industrial association analysis report) is difficult to apply directly to the defense weapons system. Therefore, research on the economic ripple effects applicable to the defense arms procurement project was needed. In this study, we propose the generic methodology for estimating economical and technical ripple effects resulted in acquiring new weapon systems. Based on the analysis of inter-industrial relations, economical ripple effects are estimated with production inducing effects, value-induced effects, employment-induced effects and export-induced effects. Also, the technological ripple effects are estimated with technological intensity represented by investment cost in research and development. To show the validity of proposed methodology, a case study of acquiring new weapon systems such as GR (guided rocket), destroyer, and helicopter is accomplished. From the case study, it is concluded that these economical & technological ripple effects can be used as a reference to decision making in the course of acquiring major future defense weapons systems.

Architectural Model of Integrated Simulation Environment for the M&S Based Design of Unmanned Ground Combat Vehicle (M&S기반 무인지상전투차량 설계를 위한 통합모의실험환경 아키텍처모델)

  • Choi, Sang Yeong;Park, Jin Ho;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • M&S (Modeling & Simulation) based design is widely accepted for the development of the future weapon system with better performance in a cheaper and faster way. Integrated simulation environment (ISE) is needed for the M&S based design. On the ISE, system engineers can not only verify design options but also validate system requirements. In this paper, we propose architectural models of the integrated simulation environment (ISE) which incorporates mission effectiveness M&S (Modeling & Simulation), system performance M&S, the optimization model of integrated performances, digital mockup and virtual prototype. The ISE architectural models may be used to implement the ISE for the development of the future unmanned ground combat vehicle.

Development of Terrain Analysis S/W for Military Use of DTM (수치지형 자료의 모델링 및 지형분석 S/W의 개발)

  • Mun Seung-Hwan;Choe Byeong-Gyu;Hwang Mun-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.31-43
    • /
    • 1991
  • The fire effectiveness and the operationability of the ground weapon system (such as tank, armored vehicle, howitzer, MLRS, ${\cdots}$), whose operations are usually happened on the ground, are dependent not only on their performances but also on the terrain environments. Especially, the artillery weapons systems' effectiveness is largely varied, because their maneuverability (such as translation, occupation of their sites) and the fire effectiveness are very dependent on the terrain. In this paper, presented are the methods how to analyze the terrain using the digital terrain data. And a software (which are implemented on the IBM PC compatible personal computer) is developed for the analysis of the terrain using the various method of computer Aided Geometric Design and Modeling. The S/W is expected to be very useful for the evaluation of the artillery weapon systems and for the commanders' decision making.

  • PDF

Imprementation of Real Time HILS System for Ground Test of Underwater Vehicle (수중 운동체의 육상 모의시험을 위한 실시간 HILS 시스템 구현)

  • Park, Yeong-Il;Choi, Young-Chul;Cho, Kyu-Kab;Lee, Man-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.282-289
    • /
    • 1999
  • To minimize a real world test of underwater guided vehicle, it is necessary to perform a test on ground by using closed loop test techniques. This paper describes implementation of HILS(Hardware In the Loop Simulation) system for ground test and test methodologies for performance evaluation of a guided weapon. HILS system uses a real time distributed computer and a real time processing technique. Ground test results of underwater vehicle are presented for moving and stationary targets by using HILS system.

  • PDF

A Case Study on Analysis Methodology of Costal Defence Weapon System (해안방어 무기체계 효과분석 방법론: 사례연구를 중심으로)

  • Shin, Sang-Wook;Choi, Bong-Wan;Oh, Cheon-Kyun;Jo, Han-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.124-134
    • /
    • 2019
  • As the types of North Korea's provocation are diverse and unexpectable in the costal area, ROK navy needs to develop countermeasures, such as costal defence guided rockets. Recently ROK navy developed the PKX-B which is equipped with the new 130 mm guided rocket. The most popular rockets are LOGIR for short range targets, 130 mm guided rocket for middle range targets and Spike-NLOS for long range targets. As various guided rockets are developed, it is required to develop a guided rocket analysis model and it's analysis methodology. In addition, these guided rockets can be installed on any platforms; ground vehicle, aircraft and warship. The paper proposes systematic methodology to estimate the operational effectiveness of costal defence guided rockets. A case study exploiting the ARENA simulation model is explained to demonstrate the implementation of the proposed methodology.

Derivation of Operational Concept for the BMD of the Aegis Ship (이지스함의 탄도미사일 방어를 위한 운용개념 도출)

  • Lee, Kyoung Haing;Baek, Byung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.44-51
    • /
    • 2016
  • This paper describes the operational concept of the Aegis ship's missile defense. Recently, North Korea conducted a fourth nuclear-weapon test that involved the launch of a long-range missile and the underwater launch of an SLBM. The ground-based BMD (Ballistic Missile Defense) system is very limited for the SLBM of a miniaturized nuclear warhead; therefore, it is necessary to build a reliable sea-based missile-defense system. The ROK Navy has, however, only utilized the Aegis ship that is designed with a search-and-tracking sensor but is without a ballistic-missile interception capability. Given this information, this work focuses on the operational concept of the Aegis BMD by comparing the BMD capabilities of the ROK with those of the U.S.

A Threat Assessment Algorithm for Multiple Ground Targets (다수의 대지표적을 위한 위협 평가 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.590-599
    • /
    • 2018
  • As a basic information to implement the fire plan that dominates multiple targets effectively under the battle environment with limited resources, such a process is mandatory that gives a priority order to a target with the high level of threat by quantitatively computing the threat level of an individual target through the analysis on the target. However, the study has still remained in the initial level on an evaluation algorithm for the threat level of the ground target. Considering this fact, the present paper proposes the evaluation algorithm for the threat by multiple ground targets. The proposed algorithm has a core point to consider the type of target and protected asset to implement the computation of proximity; set the additional value based on the weights indicating the significance of weapon and protected asset; and compute the threat level of a target that considers the characteristics of the target. The evaluation and verification of performances have been implemented through the simulation and visualization of an algorithm proposed in the present paper. From the performance result, as the proposed algorithm has been able to perform effectively the threat assessment according to the weights indicating the significance of weapons and protected assets under diverse environments where weapons and protected assets are located, high utility and effect are expected when applied to an actual ground weapon system.

Recovering Network Joining State for Normal/Abnormal Termination of Battlefield Management System (전장관리시스템의 정상/비정상 종료 시 망 가입상태 복원)

  • Choi, YoonChang;Kwon, DongHo
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.749-759
    • /
    • 2017
  • The weapon system based on voice call can cause delay, error or damage to the message during the exchange of information. Furthermore, since the weapon system has a unique message format, it has limited data distribution. Therefore, a Korea Variable Message Format(KVMF) has been developed in this study to utilize a standard sized data format to guarantee the transmission quality and minimize the transmission amount. The ground tactical data link system quickly and accurately shares tactical information by incorporating a field management system that utilizes the KVMF standard message in the mobile weapon system. In this study, we examine the possibility of performing the mission immediately by recovering the state of network joining when a normal/abnormal termination situation of the battlefield management system occurs.

Review about the Lightning Protection System for Ground Facilities of Anti-aircraft Weapons System (뇌 보호시스템의 대공무기체계 지상시설 적용에 대한 고찰)

  • Jung, Kyoungwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.339-347
    • /
    • 2021
  • Recently, the incidence of lightning in Korea has been increasing more and more. The damage caused by lightning is also getting worse. Lightning protection system is a prerequisite, not a sufficient condition. Considering the characteristics of lightning, there is a high frequency of lightning strikes in highlands. So, high grades of LPS should be applied to ground facilities of anti-aircraft weapons systems. 4-Level LPS was applied on groung facilities of anti-aircraft weapons system based on lightning incidence rate in past. There are some possibilities of damage from lightning in anti-aircraft weapons system. So, we have to readjust the LPS level with grounding, lightning rods and surge protect device based on lightning incidence rate in now days. Propose 2-level LPS and design with lightning rods, surge protector, separated grounding in this paper.

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.