• Title/Summary/Keyword: Ground Thermal Response

Search Result 83, Processing Time 0.024 seconds

Prediction of Ground Thermal Properties from Thermal Response Test (현장 열응답 시험을 통한 지중 열물성 추정)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Young-Sang;Kim, Geon-Young;Kim, Kyungsu
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.5-14
    • /
    • 2016
  • The use of geothermal energy has increased for economically and environmentally friendly utilization, and a geothermal heat pump (GSHP) system for space heating and cooling is being used widely. As ground thermal properties such as ground thermal conductivity and ground thermal diffusivity are substantial parameters in the design of geothermal heat pump system, ground thermal conductivity should be obtained from in-situ thermal response test (TRT). This paper presents an experimental study of ground thermal properties of U and 2U type ground heat exchangers (GHEs) measured by TRTs. The U and 2U type GHEs were installed in a partially saturated dredged soil deposit, and TRTs were conducted for 48 hours. A method to derive the thermal diffusivity as well as thermal conductivity was proposed from a non-linear regression analysis. In addition, remolded soil samples from different layers were collected from the field, and soil specimens were reconstructed according to the field ground condition. Then equivalent ground thermal conductivity and ground thermal diffusivity were calculated from the lab test results and they were compared with the in-situ TRT results.

Limitations and improvement of the in situ measurements of ground thermal conductivity in Korea (국내 지중열전도도 측정 방법의 한계 및 개선 방향)

  • Shim, Byoung Ohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.195.2-195.2
    • /
    • 2011
  • The borehole heat exchanger of Geothermal Heat Pump (GHP) system should be sustainable and cost effective for long term operation. To guaranty the performance of the system thermal Response Tests (TRTs) with simple recommended procedures have been applied in many countries. Korea government developed a standard TRT procedure in order to control the quality on GHP projects. In the TRT procedure interpretation method has a rule that data set has to be interpreted by the line source model(LSM). The LSM employes some assumptions that surrounding medium is homogeneous and the line source is infinite and constant heat flux, however real ground condition is unisotropic and heterogeneous, and showing regional or local ground water flows in many cases. We need to develope improved evaluation models to estimate accurate ground thermal conductivity with respect to geological and influence of ground water because current TRT standard test procedure has limitations to be applied for every locations and system. This study surveyed the uncertainty of the thermal parameters from the interpretation method considering different evaluation period. The interpretation of 208 TRT data sets represents limitations of LSM application that some obtained ground thermal conductivities are statistically unstable and convergence time of ground thermal conductivity over test period shows trends responding the length of test period. This evaluation study will be helpful to provide some effective procedure for the thermal parameter estimation and to complement current TRT standard procedure.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE) (수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구)

  • Lim Kyoung-Bin;Lee Sang-Hoon;Soung Nak-Won;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.

Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model (단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.

Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger (수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발)

  • Kim, Won-Uk;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

A Study on the Heat Transfer Characteristics of Various Construction of SCW Type Ground Heat Exchanger (다양한 형상의 SCW형 지중 열교환기 열전달 특성에 관한 연구)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.460-466
    • /
    • 2014
  • This paper uses in-situ thermal response tests to present the characteristics of the ground thermal conductivities of three different SCW GHX. These SCW GHXs were installed in the same site in Seojong City. The three different cases are distinguished by the flow direction and the presence of a filler. The first type (A) is constructed for water to flow downstream. The second (B) and third (C) types are designed for water to flow upstream, and a filler is additionally inserted into the third type. The results of the in-situ thermal response tests, indicate that the ground thermal conductivity for types (A), (B) and (C) are of $4.84W/m{\cdot}K$, $3.40W/m{\cdot}K$, and $11.62W/m{\cdot}K$, respectively.

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.