• Title/Summary/Keyword: Ground Reinforcement

Search Result 614, Processing Time 0.029 seconds

Estimation on Bearing Capacity of Waste Landfill Reinforced by Geosynthetics Using Numerical Analysis (수치해석에 의한 토목섬유 보강 폐기물 매립지반의 지지력 평가)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because of the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, in case of the construction of the building on such a landfill, ground settlement and reduced bearing capacity would be occurred without ground stabilization and proper reinforcement. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. A numerical simulation has been undertaken to model a layer of weathered soil overlaying a layer of geosynthetic reinforcement and waste disposal ground. The proposed analytical model can be used to obtain surface settlement characteristic in the two-dimensional deformation related reinforcement.

  • PDF

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

A Case Study of Ground Improvement on Railroad Station Foundation by the Application of CGS Method. (역사기초 보강 공법으로써 CGS 공법 적용사례 연구)

  • Yeoh Yoo-Hyeon;Chun Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1065-1070
    • /
    • 2004
  • Recenlty, there are many cases that structures are constructed on soft ground in domestic. Generally in those cases, appropriate geotechnical techniques for the ground are needed. In this study, an example for ground improvement of OO railroad station construction site is introduced and analyzed. The ground conditions of this site which is soft ground are that N value is under 6, average depth and ground water table is 24.4m, GL-1.7. So, as a countermeasure technique for bearing reinforcement, Compaction Grouting System (CGS) method was applied on construction site. To estimate the application of CGS method, piezo cone penetration test and static pile loading test were carried out during the construction. Results of analysis show that CGS method for improving the bearing capacity of soft ground is applicable for the ground well.

  • PDF

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

A Study on the Restraint-Effect of Ground Settlement by Nail Reinforcement of Tunnel in Soft Ground (토사NATM 터널의 네일 보강에 의한 지반침하 억제효과에 관한 연구)

  • 임종철;고호성;박이근;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.51-59
    • /
    • 2000
  • 네일(또는 락볼트)은 토사터널의 NATM 시공 시 보강재로 사용되어진다. 그러나, 네일의 적절한 설치방법이 아직까지 정립되지 않았다. 본 연구에서는 네일의 길이와 위치를 변화하여, 그 효용성을 연구하였다. 그 결과, 네일이 지반보강을 위하여 토사지반에 사용될 시 경제적인 길이는 터널직경의 0.5배이다. 보강의 효용성은 네일의 위치에 따라 터널라이닝 측벽의 하부, 중부, 상부의 순서이다.

  • PDF

Effect Reinforced Ground using Geocell (지오셀을 적용한 지반의 보강효과에 관한연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.782-791
    • /
    • 2009
  • This study was carried out the laboratory tests and field plate load test in order to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comprison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. In the future, the reinforcement effect of the geocell rigidity and load-balancing effect of the geocells should be evaluated.

  • PDF

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF

The Evaluation of Bearing Resistance of Underreamed Ground Anchor through Realistic Model Experiments (실모형실험을 통한 지압형 앵커의 지압력 평가)

  • Min, Kyongnam;Lee, Jaewon;Lee, Junggwan;Lee, Dongwon;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.87-92
    • /
    • 2014
  • The Ground anchor is reinforcement to resist pull-out through ground that is used supports structure. The pull-out resistance of anchor is constructed by skin friction resistance from compression borehole wall in expanded wings and bearing pressure from the ground. Especially, underreamed ground anchor is reinforcement that adopts active reinforcement to prevent deformation of ground using bearing resistance generated reaming anchorage. This study is conducted to calculate bearing resistance of underreamed ground anchor. Realistic model tests were fulfilled to determine bearing resistance of anchor, and correlate results of tests to Uniaxial Compressive Strengths (UCS) of ground models that assumed weathered rock condition in 8 case. In a comprehensive series of the tests, the bearing resistances were measured by pull-out tests. The bearing resistances derived from tests have a linear correlation with UCS. We also suggest empirical equation between bearing resistance and UCS of rocks by single linear regression analyses. In test results of this study, the bearing resistances were evaluated approximately 13 times higher than UCS of the grounds, and it is qualitatively similar to numerical values of pull-out force derived from theory.

A Study on Field Change Case of Tunnel Concrete Lining Designs Using GLI(Ground Lining Interaction) Model (GLI(Ground-Lining Interaction)모델을 이용한 터널 콘크리트라이닝의 현장 설계변경 사례에 대한 연구)

  • Chang, Seok-Bue;Lee, Soo-Yul;Suh, Young-Ho;Yun, Ki-Hang;Park, Yeon-Jun;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • GLI model was verified to consider the interaction between a ground and a tunnel lining and to rationally reduce the ground load acting on the secondary lining(concrete lining) of a tunnel. In this study, the economy and the construction condition of tunnel concrete linings designed by a conventional frame model at Lot O of OO line were highly enhanced through a field design change using GLI model. For a few safe considerations, not only about 50% saving of reinforcing steel could reduce the material cost but also the wide space between bars could make it easy to pour concrete mix without voids. There was large saving effect of reinforcing steel for poor ground conditions because Terzaghi's load used in the conventional frame model produces too much high loads for those conditions.