• Title/Summary/Keyword: Ground Reflection

Search Result 195, Processing Time 0.025 seconds

Influence of the homogenizing grade and meathematical treatment on the determination of ground beef components with near infrared reflectance spectroscopy (식품의 근적외선 반사분광분석법에서 균질의 정도가 흡광도에 미치는 영향 및 수학적 처리방법에 관한 연구)

  • Oh, Eun-Kyong;Grossklaus, Dieter
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.408-413
    • /
    • 1992
  • This study was conducted to determine the effect of the homogenizing grade of sample on absorbance of near infrared reflectance spectrophotometer with which chemical compositions of food were rapidly and effectively analyzed. By the mathematical treatment of absorbance values standard error of prediction was reduced as follows. 1. The absorbance values of various samples ground for the same periods of time were calibrated before or after treatment with first or second derivative in an attempt to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.478%, 0.658% and 0.580%, respectively, those for fat content 0.949%, 0.637% and 0.527%, respectively, and those for protein content 0.514%, 0.493% and 0.394%, respectively. Calibration of absorbance values after second derivative treatment showed the highest accuracy in predicting sample components. 2. The absorbance values of various samples ground for the different periods of time were calibrated before or after treatment with first or second derivative in order to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.026%, 0.589% and 0.568%, respectively, and those for protein content 0.860%, 0.557% and 0.399%, respectively. The standard error of prediction were lower in the order of calibrations before and after first and second derivative treatments. As a result, calibration of absorbance values after second derivative treatment showed higher accuracy regardless of grinding time of samples.

  • PDF

A Study of Smart Convergence Design of English Vocabulary Learning Contents Applying the Periodic Repetitive Method (주기적 반복법을 적용한 영단어 학습콘텐츠 스마트 융합 설계 연구)

  • Kim, Young-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • This paper suggests designing how to acquire English vocabularies on the smart devices based on the research that a ground-breaking English Vocabulary Learning Contents needs developing. The method makes it possible to develop the contents which helps the learners to master English vocabularies effectively on the smart phone. The core idea of this paper is as in the following: 1) English learners learn 30 vocabularies for three minutes 10 times (one is for a new learning and the other nine ones are for reviews about the first learning) a day. 2) Considering Ebbinghaus Forgetting Curve, the reflection study proposes to provide the learners with three times' reviews: one day, 10days, and 30days later from which they learn the first 30 vocabularies. This contents is mainly made up of 5 developing sections (1)to generate App ID, (2)to access App, (3)to set up Alarm, (4)to process Word learning, and (5)to monitor the result of learning. This proposed idea is optimized to enhance the memory by Ebbinghaus Periodic Repetitive Method, which makes the learners satisfied with their English vocabulary learning.

Optical Characterization of Sensory Rhodopsin II Thin Films using a Near-field Scanning Microwave Microscope (근접장 마이크로파 현미경을 이용한 로돕신의 광학적 특성 연구)

  • Yu, Kyung-Son;Kim, Song-Hui;Yoon, Young-Woon;Lee, Kie-Jin;Lee, Jung-Ha;Choi, Ah-Reum;Jung, Kwang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • We report the electro-optical properties of the sensory rhodopsin II using a near-field scanning microwave microscope(NSMM). Rhodopsin was known as a photoreceptor pigment with a retinal as a chromophore via a protonated Schiff base and consists of seven ${\alpha}-helical$ transmembrane segments. The sensory rhodopsin II, expressing E. coli UT5600 with endogenous retinal biosynthesis system and purified with $Ni^{-2}-NTA$ affinity chromatography in the presence of 0.02 % DM (Dodecyl Maltoside) from Natronomonas pharaonis. We measured the absorption spectra and the transients difference of sensory rhodopsin II from Natronomonas pharaonis using a UV/VIS spectrophotometer with Nd-Yag Laser (532 nm). The absorption spectra of NpSR II showed a typical rhodopsin spectrum with a left shoulder region and the photointermediates spectra of NpSR II-ground state (${\lambda}max=498\;nm$), NpSR II-M state (${\lambda}max=390\;nm$), and NpSR II-O state (${\lambda}max=550\;nm$) during the photocycle. The observed photocycle reaction was confirmed by measuring the microwave reflection coefficient $S_{11}$ at an operating frequency of f=3.93-3.95 GHz and compared with the results of a photocycle of NpSR II.

Frequency Characteristics of Shallow Seismic Reflection Data - Dogye, Samchuck, Kangwon (천부 탄성파 반사법 자료의 주파수 특성 - 강원도 삼척시 도계지역)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • Seismic reflection data was obtained by using 28 and 100 Hz geophones at the ground subsidence sites in an old coal mine area. Frequency spectrum of the geophone analyzed with offset revealed that 1) In the near offset ($1\~10m$), the signals in the 100 Hz geophone data contains higher frequency components (up to 300 Hz) than that of the 28 Hz (<200 Hz), 2) In the intermediate offset ($11\~39m$), although the 28 Hz geophone data showed very similar frequency characteristics as the near offset data, the 100Hz geophone data seemed to be contaminated by noise at high frequency zone (>200 Hz). In the far offset ($\geq40\;m$), the signals in both the 28 and 100 Hz geophone data are attenuated to noise level at high frequency Bone more than 150 Hz.

  • PDF

A New X-Ray Image Sensor Utilizing a Liquid Crystal Panel (새 구조의 액정 엑스선 감지기)

  • Rho, Bong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • We developed a new x-ray image sensor utilizing a reflection-mode liquid crystal panel as its sensitive element, and tested its functionality by using it to obtain an x-ray image of a printed circuit board. In the liquid crystal x-ray image sensors hitherto reported, the liquid crystal layer is in direct contact with the photoconductive film which is deposited on a glass substrate. In the fabrication of the new x-ray image sensor, a liquid crystal panel is fabricated in the first step by using a pair of glass plates of a few centimeters thicknrss. Then one of the glass substrates is ground until its thickness is reduced to about $60\;{\mu}m$. After polishing the glass plate, dielectric films for high reflectance at 630 nm, a film of amorphous selenium for photoconduction, and a transparent conductive film for electrode are deposited in sequence. The new x-ray image sensor has several merits: primarily, fabrication of a large area sensor is more easily compared with the old fashioned x-ray image sensors. Since the reflection type liquid crystal panel has a very steep response curve, the new x-ray sensor has much more sensitivity to x-rays compared with the conventional x-ray area sensor, and the radiation dosage can be reduced down to less then 20%. By combining the new x-ray sensor with CCD camera technology, real-time x-ray images can be easily captured. We report the structure, fabrication process and characteristics of the new x-ray image sensor.

Design of Ultra Small Dual Cross-Dipole Antenna for Mobile Devices (모바일 기기를 위한 초소형 이중 교차 다이폴 안테나 설계)

  • Sa, Gi-Dong;Kim, Sa-Ung;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.489-496
    • /
    • 2019
  • In this paper, we design and fabricate an ultra small dual crossed dipole antenna operating at 2.4 GHz frequency. In order to miniaturize the size of the antenna so that it can be applied to a mobile device, a cross dipole is disposed on the upper two layers and a reflection plane, a horizontal matching circuit and a ground plane are arranged on each layer. The circuit was connected by a vertical through-hole. The size of the fabricated antenna is $21.61mm{\times}16.88mm{\times}1.27mm$, the measured reflection coefficient is -31.5 dB, and the bandwidth below -10 dB is 112 MHz. In addition, since the gain of the antenna is -4 dBi, it has the omnidirectional radiation characteristic, so it can be applied to various fields as an antenna for mobile devices.

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

All-fiber 1.5-kW-class Single-mode Yb-doped Polarization-maintaining Fiber Laser with 10 GHz Linewidth (전광섬유 MOPA 시스템 기반 10 GHz 선폭을 갖는 1.5 kW 단일모드 이터븀 첨가 편광유지 광섬유 레이저)

  • Jeong, Seongmook;Kim, Kihyuck;Kim, Taekyun;Lee, Sunghun;Yang, Hwanseok;Lee, Junsu;Lee, Kwang Hyun;Lee, Jung Hwan;Jo, Min-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • In this paper, we have studied the characteristics of stimulated Brillouin scattering (SBS) and mode instability (MI) in a ytterbium-doped polarization-maintaining fiber laser with master oscillator power amplifier configuration. We measured the laser output power and back-reflection spectrum for a variety of ytterbium-doped fibers and seed lights, to investigate the power-scaling limits of fiber lasers. By optimizing the laser structure, we demonstrated an all-fiber high-power polarization-maintaining fiber laser with near-diffraction-limited beam quality. The output power of 1.5 kW was achieved with a linewidth of 10 GHz, generated by pseudo-random binary sequence (PRBS) phase modulation. The beam quality M2 was about 1.15 at the maximum output power. The polarization extinction ratio (PER) was greater than 17 dB.

Eigenimage-Based Signal Processing for Subsurface Inhomogeneous Clutter Reduction in Ground-Penetrating Radar Images (지하 탐사 레이더 영상에서 지하의 비균일 클러터 저감을 위한 고유 영상기반 신호처리)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1307-1314
    • /
    • 2012
  • To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.

Design for Minimizing Transmission Loss of Broadband Right-Angle Coaxial-to-Microstrip Transition (광대역 동축-마이크로스트립 수직 트랜지션의 전송 손실 저감 설계)

  • Kim, Sei-Yoon;Roh, Jin-Eep;Chung, Ji-Young;Ahn, Bierng-Chearl;You, Young-Gap
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1040-1049
    • /
    • 2006
  • A design method for minimizing transmission loss of a broadband right-angle transition from a coaxial cable to a microstrip line is presented. The right-angle transition has been widely used where printed circuit applications need to be fed from behind the ground plane using coaxial line. To obtain the minimized transmission loss over the whole operating frequency range of the transition, design parameters such as ground aperture and probe diameters, ground aperture offset, and stub length are optimized using a commercial electromagnetic simulation software. Results are presented for the optimum right-angle transition from an SMA connector to a microstrip line on common reinforced 0.787 mm thick PTFE substrates. Measurements of a fabricated transition show that reflection coefficient is less than -22 dB and insertion loss is less than 0.45 dB over $0.05{\sim}20GHz$.