• Title/Summary/Keyword: Ground Planes

Search Result 95, Processing Time 0.029 seconds

Coupling Performance Analysis of a Buried Meshed-Ground in a Multi-layered Structure

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.282-287
    • /
    • 2004
  • Since the manufacturing process in the LTCC process does not allow solid ground planes between ceramic layers to isolate the signal lines, the buried ground should be realized as a meshed ground plane. Both characteristic impedances of the signal lines and couplings between different signal layers are influenced by the properties of these meshed planes. In this paper, we propose a new analysis method for coupling behavior between internal transmission lines, which are isolated by the buried meshed-ground planes. The coupling behavior between layers isolated by meshed-ground planes is investigated by the coupled-transmission line model for the isolated layers. The coupling factors between isolated lines with the meshed-ground are extracted by 2-D FEM calculations.

MIMO Antenna Using Resonance of Ground Planes for 4G Mobile Application

  • Zhao, Xing;Kwon, Kyeol;Choi, Jeahoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2013
  • A MIMO antenna using the resonance of ground planes is proposed for 4G mobile application. A resonant mode is generated when the double ground planes (upper and lower) in the mobile terminal are excited as the radiator. By combining the resonant modes contributed from both the antenna element and the ground planes, the proposed MIMO antenna realizes a wideband property over LTE band 13. In addition, an inductive coil is employed to reduce the antenna volume. These approaches not only simplify antenna design but also effectively improve bandwidth and efficiency. The proposed MIMO antenna has an excellent ECC value of below 0.1 because of the nearly orthogonal radiation patterns of the two radiators. Moreover, an additional antenna is adopted to cover WiMAX, WLAN, and Bluetooth services simultaneously in frequency range from 2 GHz to 2.7 GHz.

The Field of Power/Ground Planes influenced by the HPEM Source, and its Damage Reduction

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.406-410
    • /
    • 2012
  • This paper looks into the field inside the wide rectangular box structure that is excited by the High Power Electromagnetic(HPEM) source as a potential threat to electric grid and communication networks causing malfunction or destruction. The rectangular box is assumed power/ground planes and its internal field is calculated by the cavity model with the lightning strike excitation as an HPEM pulse. The accuracy of the calculation method employed here is validated through a $156mm{\times}106mm{\times}508{\mu}m$ parallel metallic plate case which is manufactured and tested, and is applied to the size of a building. With the help of the cavity model that takes into account loading, the level of the electric field is shown to decrease when a metal pillar is loaded between the power and ground planes.

Prediction of the Radiated Emission(RE)s due to the PCB Power-Bus' Resonance Modes and Mitigation of the RE Levels

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • PCB Power-Bus (comprising power/ground planes) impedance and fields are evaluated by an efficient series expansion method that is suggested in this paper. It is used to investigate the structure's radiated emission(RE) levels and find acceptable ways of loading the power/ground planes such as decoupling capcitor(DeCap)s, balanced feeding and slits, in order to reduce the interferences. Also, the calculations and measurements of a proposed geometry are verified by vector fitting as a analysis model to check the behavior of the slit.

Loop-Type Ground Radiation Antenna for a C-Shaped Ground Plane

  • Lee, Hongkoo;Zahid, Zeeshan;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, optimum locations for a loop-type ground radiation antenna are evaluated for C-shaped ground planes of two different sizes. To achieve good radiation performance, the antenna needs to be located such that it couples with the dominant current mode of the ground plane. Antenna locations are proposed using the characteristic mode analysis of the ground planes. The measured bandwidths of the antennas at the proposed locations have more than twice the bandwidths of the cases in which the antennas are coupled with non-dominant modes. The operating frequency of the antennas is 2.45 GHz.

Inductance-Enhanced Corrugated Ground Planes for Miniaturization and Common Mode Noise Suppression of Differential Line in High-Speed Packages and PCBs (고속 반도체 패키지 및 PCB 내 공통 모드 잡음 감쇠를 위한 소형화 된 인덕턴스 향상 파형 접지면 기반 차동 신호선)

  • Tae-Soo Park;Myunghoi Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.246-249
    • /
    • 2024
  • In this paper, we present a miniaturized differential line (DL) using inductance-enhanced corrugated ground planes (LCGP) for effective common-mode (CM) noise suppression in high-speed packages and printed circuit boards. The LCGP-DL demonstrates the CM noise suppression in the frequency range from 2.09 GHz to 3.6 GHz. Furthermore, to achieve the same low cutoff frequency, the LCGP-DL accomplishes a remarkable 23.2% reduction in size compared to a reference DL.

Insertion Loss Characteristics of a Parallel Two-Wire Transmission Line with Equal Line Length Due to a Rectangular Aperture Sizes in Dual Ground Planes (두 개의 접지 평판 사각형 개구의 변화에 따른 평행 2선 전송 선로의 삽입 손실 특성)

  • Jung, Sung-Woo;Lim, Sung-Min;Jin, Jung-Hi;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.675-682
    • /
    • 2011
  • This paper presents two ground plane effects due to the size of two rectangular apertures for two-wire transmission line with equal line length crossing the changeable rectangular apertures in infinite ground planes. The CST MWS is used to determine the characteristics of the insertion loss of the transmission line from the load section in accordance with the ground plane aperture size. The results show that the insertion gain and the insertion loss are periodically observed for the multiple frequency of the half wavelength resonance by the wire length when the transmission line is nearby to horizontal side or vertical side of the aperture. The measurements of the insertion loss are performed to verify the theoretical analysis.

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

Dual-Band Fractal Antenna with Bandwidth Improvement for Wireless Applications

  • Nsir, Chiraz Ben;Boussetta, Chokri;Ribero, Jean-Marc;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.75-80
    • /
    • 2021
  • In this paper, a dual-band Koch Snowflake antenna is proposed for wireless communication systems. Fractal geometry, CPW-feed and stepped ground planes are used to improve the impedance bandwidth. By properly introducing a hexagonal split-ring slot to radiating element, a lower frequency band is generated. The proposed structure is fabricated and tested. Experiment results exhibit dual-band of 0.73-0.98 GHZ and 1.6-3.1 GHz which makes this antenna suitable candidate for GSM900, GSM1800, UTMS2100, Wi-Fi 2400 and LTE2600 bands. In addition, a good radiation pattern, a satisfactory peak gain and a radiation efficiency, which reaches 95%, are achieved.

Effects of Mesh Planes on Signal Integrity in Glass Ceramic Packages for High-Performance Servers

  • Choi, Jinwoo;Altabella Lazzi, Dulce M.;Becker, Wiren D.
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.35-50
    • /
    • 2013
  • This paper discusses effects of mesh planes on signal integrity in high-speed glass ceramic packages. One of serious signal integrity issues in high-speed glass ceramic packages is high far-end (FE) noise coupling between signal interconnects. Based on signal integrity analysis, a methodology is presented for reducing far-end noise coupling between signal interconnects in high-speed glass ceramic modules. This methodology employing power/ground mesh planes with alternating spacing and a via-connected coplanar-type shield (VCS) structure is suggested to minimize far-end noise coupling between signal lines in high-speed glass ceramic packages. Optimized interconnect structure based on this methodology has demonstrated that the saturated far-end noise coupling of a typical interconnect structure in glass ceramic modules could be reduced significantly by 73.3 %.