• Title/Summary/Keyword: Ground Injection

Search Result 288, Processing Time 0.022 seconds

A Study on the Application Method of Artificial Injection Test according to the Hydraulic Conductivity of Aquifer (대수층 수리지질특성에 따른 인공함양시험 적용 방법에 관한 연구)

  • Chae, Dong-Seok;Choi, Jin-O;Jeong, Hyeon-Cheol;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.589-601
    • /
    • 2021
  • Artificial recharge technology is a method for solving problems such as groundwater level drop and ground subsidence caused by groundwater withdrawal. This study investigated the applicability of using the hydraulic conductivity of an aquifer to predict injection test results for aquifer restoration. Pumping and injection tests were performed under the same conditions as those for the artificial injection facility located in Icheon, Gyeonggi-do. The hydraulic conductivity of the aquifer, which plays a decisive role in restoring the groundwater level, was derived from the pumping test. A numerical model of a simplified on-site aquifer was constructed, and a transient analysis was applied with the same conditions as the pumping test. The correlation between the measured and the resulting model values is strong (R2 = 0.78). The injection test was performed in a sedimentary layer composed of silt sand and clay sand. From the results of the injection test, an empirical formula was derived using Theim's formula, which is a common well analysis solution to determine the parameters of the aquifer from time-level data. The model values from the empirical formula have a high degree of correlation (R2 = 0.99) with measured values. Under specific conditions, for areas where it is difficult to conduct an injection test, the formula from this study, which relies on the hydraulic conductivity of the aquifer determined through the pumping test, may be used to predict reliable injection rates for groundwater restoration.

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

A Study on Analysis of Influx Path and Ingredient of Sedimentation Substance in Tunnel Drainage System (터널 배수시설에 유입된 침전물의 유입경로 및 성분분석 연구)

  • Woo, Jong-Tae;Yoo, Sang-Geon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.145-152
    • /
    • 2004
  • Red sedimentation substance contains large portion of Fe. The earth retaining structure of a tunnel and ground water containing more portion of Fe than other area are the major factor of this substance In case of white sedimentation substance, the most frequently founded ingredient is CaO, which is occurred in case grouting injection materials for ground reinforcement is transmitted into a tunnel system by ground water. This substance is doesn't affect safety of a tunnel Black sedimentation substance is often found in tunnels near station. This substance is a mixture of either white or red sedimentation substance and detergent material in station transmitted to a tunnel drainage system.

A Study on application of Trapezoidal Steel Box Tunnelling Method (지중압입체를 이용한 지하구조물 축조방법의 적용성 연구)

  • Jun, Sung Bai
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.138-154
    • /
    • 2008
  • The conventional non-dig underground structure building method which made an appearance to reduce the social and environmental costs and maximize the efficiency of the social overhead capital facilities could not help being uneconomical because of many problems such as unnecessary excessive excavation, water leakage, obstacle interference, difficulty of curvilinear application and connection complexity between propelled and injected bodies due to indiscriminate application of small and large circular steel pipes without consideration of the site conditions. The T.S.T.M, in which a protruded square tube is applied as a propulsion and injection body in a design that considered site conditions such as ground condition, depth of soil and live load, was able to be economical as it solved the problems of water resistance, minimization of obstacle interference and curvilinearity, and we can see that it can be applied to all grounds by utilizing or complementing the target ground in terms of engineering. Also in configuring the transverse section, it is possible to not only secure excellent structural safety but also implement all of the above engineering characteristics not only in the square cross section but also in the arch cross section, so it was possible to build structures on any section or ground, and we could confirm the LCC reduction effect and the VE effect.

  • PDF

A Study on the Effectiveness of the Mortar Jet Method in Increasing the Strength of the Soft Ground (시멘트 몰탈형 고압분사공법(MJM)에 의한 연약지반 보강효과에 관한 연구)

  • Chun, Byung-Sik;Baek, Ki-Hyun;Jooi, Tae-Seong;Do, Jong-Nam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.59-64
    • /
    • 2005
  • Although high pressure discharge method is widely used for improving soft ground, it has various problems including lack of strength increase and the possibility of water pollution and soil contamination. MJM(Morta Jet Method) uses sand in addition to cement as the injection material. MJM uses triple rods with a built-in nozzle that allows easier discharge of the slime, resulting in higher replacement area ratio and more uniform formation of pillar hydrates, and thus results in significant increase in strength. MJM is expected to perform especially well as piles in marine clays. This study investigates the field applicability of the MJM through extensive laboratory and field tests.

  • PDF

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.

A Study on Mechanism of Hydrofracturing in Gelled Sandy Ground (약액으로 고결된 모래 지반의 수압파쇄에 관한 연구)

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.133-140
    • /
    • 1990
  • Th. mechanism of hydraulic fracturing in sandy soil is elucidated by investigating the relation among the hydrofracturing pressure($P{_f}^{\prime}$), the confinning pressure(${\sigma}_3^{\prime}$), the tensile strength of gelled sand(${\sigma}_t$), and the permeability of sand(k) through many injection tests on several kind of sand.

  • PDF

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.

Applicability of the Multi-Channel Surface-soil CO2-concentration Monitoring (SCM) System as a Surface Soil CO2 Monitoring Tool (다채널 지표토양 CO2 농도 모니터링(SCM) 시스템 개발 및 적용성 평가 연구)

  • Sung, Ki-Sung;Yu, Soonyoung;Choi, Byoung-Young;Park, Jinyoung;Han, Raehee;Kim, Jeong-Chan;Park, Kwon Gyu;Chae, Gitak
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • Monitoring of $CO_2$ release through the ground surface is essential to confirm the safety of carbon storage projects. We conducted a feasibility study of the multi-channel surface-soil $CO_2$-concentration monitoring (SCM) system as a soil $CO_2$ monitoring tool with a small scale injection test. The background concentrations showed the distinct diurnal variation. The negative relation of $CO_2$ with temperature and the low $CO_2$ concentrations during the day imply that surface-soil $CO_2$ depends on photosynthesis and respiration. After 4.2 kg of $CO_2$ injection (1 m depth for 29 minutes), surface-soil $CO_2$ concentrations increased in the all five chambers, which were located less than 2.8 m of distance from each other. The $CO_2$ concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data from Chamber 2 and 5 with low increase rates were used for statistical analyses. Coefficient of variation for 30 minutes ($CV_{30min}$.) is efficient to determine a leakage signal, with reflecting the fast change in $CO_2$ concentrations. Consequently, SCM and $CV_{30min}$ could be applied for an efficient monitoring tool to detect $CO_2$ release through the ground surface. Also, this study provides ideas for establishing action steps after leakage detection.