• 제목/요약/키워드: Ground Improvement

검색결과 1,472건 처리시간 0.024초

CGS공법에 의한 해성점토 및 준설매립지반의 기초보강 사례 (Case Study for Improvement of Marine Clay and Dredgedfill Ground by CGS Method)

  • 신은철;정덕교;서귀창;이명신
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.480-488
    • /
    • 2010
  • The CGS method is non-discharge replacement method improving ground stiffness by the effect of static compaction with injecting very low slump mortar into ground, and is applied for increasing bearing capacity and filling ground cavity by lifting or restoring differential settled structures and preventing differential settlement. This paper suggests design of ground improvement and construction case history for civil engineering structures by CGS method. This method can be used for reinforcing soft ground and liquefaction of loose sandy soil. This method was used in SongDo area in Incheon Economic Free Zone due to its low vibration of ground while it can improve the soft soil where underground structures(subway and box culvert) are already existed.

  • PDF

연약지반 배관응력 모니터링 시스템 개발 및 적용 (Stress Monitoring System for Buried Gas Pipeline in Poor Ground)

  • 홍성경;김준호;정석영
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.41-47
    • /
    • 2006
  • This paper introduces stress monitoring system for buried gas pipeline in poor ground. During the six months of improvement construction of poor ground, maximum settlement of gas pipeline is about 40 cm. This value represents relative small compared to the initial settlement estimation of ground improvement construction plan, 90 cm. Also, this paper includes the result of finite element analysis of gas pipeline to confirm safety of pipelines in poor ground. The stress monitoring system for gas pipeline was developed to guarantee the safety of buried gas pipeline in poor ground. Eventually, the ground improvement workings are ended safely and it is proved that the pipeline has no safety problem.

연약지반 개량 시공의 실제와 문제점 (The Reality and Problem of Soft Ground Improvement Construction)

  • 최귀봉;황성원;김종렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.672-679
    • /
    • 2008
  • During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.

  • PDF

Stochastic cost optimization of ground improvement with prefabricated vertical drains and surcharge preloading

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jamin, Jay C.;Mission, Jose Leo C.
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.525-537
    • /
    • 2014
  • The typical design of ground improvement with prefabricated vertical drains (PVD) and surcharge preloading involves a series of deterministic analyses using averaged or mean soil properties for the various combination of the PVD spacing and surcharge preloading height that would meet the criteria for minimum consolidation time and required degree of consolidation. The optimum design combination is then selected in which the total cost of ground improvement is a minimum. Considering the variability and uncertainties of the soil consolidation parameters, as well as considering the effects of soil disturbance (smear zone) and drain resistance in the analysis, this study presents a stochastic cost optimization of ground improvement with PVD and surcharge preloading. Direct Monte Carlo (MC) simulation and importance sampling (IS) technique is used in the stochastic analysis by limiting the sampled random soil parameters within the range from a minimum to maximum value while considering their statistical distribution. The method has been verified in a case study of PVD improved ground with preloading, in which average results of the stochastic analysis showed a good agreement with field monitoring data.

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis

  • Wang, You;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.279-288
    • /
    • 2020
  • The permeation grouting is a commonly used technique to improve the engineering geology condition of the soft ground. It is of great significance to predict the permeation range of the grout so as to ensure the effects of grouting. This paper conducts a theoretical analysis of jet-grouting effects in ground improvement and rotary grouting pile installation by utilizing deformation-permeation coupled poroelastic solutions based on Biot's theory and Laplace-Fourier integral transform technique. The exponential function and the intermittent trigonometric function are chosen to represent time-dependent grouting pressure usually encountered in ground improvement and rotary grouting pile installation process, respectively. The results, including the radial displacement, the hoop stress, the excess pore fluid pressure, the radial discharge, and the permeation radius of grout, are presented for different grouting time, radial positions and grouting lengths. Parametric study is conducted to explore the effects of variation of the exponent in the exponential grouting pressure-time relationship on grouting-induced responses. It is expected that the proposed solutions can be used to estimate the permeation range of grouting in ground improvement and rotary grouting pile installation.

해성점토지반 개량을 위한 소일크리트 고화재의 적용성에 관한 연구 (A Study on the Application of Soilcrete Cement for Improvement of marine Clay)

  • 천병식;김진춘
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.72-77
    • /
    • 2000
  • In this paper, the effect of ground improvement and the countermeasure for the increase of strength in soft ground (wasted fill, marine clay) was studied through utilization of Soilcrete Cement as a material of ground improvement. Soil samples were obtained from $\bigcirc$$\bigcirc$$\bigcirc$ sanitary landfill to assess the applicability of the clay liner using Soilcrete Cement. Several laboratory tests were performed with the samples and skin corrosion tests of steel pipe covered with Soilcrete Cement were performed. As a result, Soilcrete Cement is considered to be applicable to the construction site and to be effective for the prevention of the corrosion of the steel pipe.

  • PDF

압밀주입에 의한 지반개량 특성고찰 (a study on ground improvement of sandy soil by CGS Method)

  • 곽수정;백홍렬
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.185-192
    • /
    • 2006
  • In this study the case of ground improvement by CGS as injection method were analyzed in order to find out effect of behavior of sandy soil and the application of this method as ground improvement. The study were analyzed N value after CGS work of sandy soil by many sites test. Considering that increase of N value, CGS can be considered as an effective method to increase the bear capacity as well as constrain the settlement of soft ground From the results of this study, N value after CGS work of sandy soil were closed to N value of ground and relative density(Dr), improvement ratio(As) of grouting and the study will be done continuously for finding out relation of them

  • PDF

연약지반 개량시 지오그리드 보강효과에 관한 실험적 연구 (Experimental Study on the Reinforcement Effect of Geogrid in Soft Ground Improvement)

  • 함현수;이상덕
    • 한국지반신소재학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-7
    • /
    • 2018
  • 해안지대나 습지와 같은 연약지반에 도로나 철도 건설이 빈번해지면서 이를 위한 연약지반 개량 사례가 증가하고 있다. 일반적으로 연약지반 개량시 작업조건만을 고려하거나 경제성만을 고려한 공법은 다수 존재하나 작업조건과 경제성을 함께 고려할 경우 적용 가능한 공법은 제한적이다. 이러한 경우 표층부와 심층부를 병용하여 개량하는 공법이 적용되어지는데, 이에 대한 기초적인 연구가 부족한 현실이다. 따라서, 본 연구에서는 연약지반에서 표층부 개량과 심층부 개량을 병용하는 경우에 대해 모형시험을 수행하여 지오그리드 보강 효과를 확인하고자 하였으며, 이때 표층부의 두께, 심층부 개량체의 직경 및 길이가 지오그리드 보강 효과에 미치는 영향을 파악하고자 하였다. 그 결과 표층부의 두께가 심층부의 직경보다 보강효과가 크다는 것을 확인하였고, 또한 표층부를 지오그리드로 보강한 경우 표층부의 강도가 증진되어 침하량이 저감됨을 확인하였다.

지반특성을 고려한 연직배수재의 통수능 시험 및 선정 (The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition)

  • 정헌철;신경하;정기문;허집
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

단위셀 시험을 이용한 SCP 공법 적용지반 점성토의 개량특성 (The Characteristics of the Improvement of the Clayey soil in the Composite Ground with Sand Compaction Pile(SCP) using Unit-cell test)

  • 이동현;신현영;한상재;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.982-989
    • /
    • 2005
  • In this study, a series of laboratory tests based on 'Unit-cell concept' are performed to investigate improvement characteristics of clay ground in sand compaction pile method. Settlement reduction characteristics of composite ground and improvement characteristics of clay part could be qualified. In these procedure, the new strain-compression index($C_{\epsilon}$) of composite ground are adopted to show compressibility of composite ground according to the area replacement ratio, which is similar to the compression index($C_c$) in pure clay ground. Also, using normalization of reduction of water content in composite ground to the initial water content, improvement characteristics of clay part are investigated.

  • PDF